专栏首页李智的专栏pandas数据清洗,排序,索引设置,数据选取

pandas数据清洗,排序,索引设置,数据选取

此教程适合有pandas基础的童鞋来看,很多知识点会一笔带过,不做详细解释

Pandas数据格式

  • Series
  • DataFrame:每个column就是一个Series 基础属性shape,index,columns,values,dtypes,describe(),head(),tail() 统计属性Series: count(),value_counts(),前者是统计总数,后者统计各自value的总数

df.isnull() df的空值为True df.notnull() df的非空值为True

  • 修改列名
df.rename(columns = {'key':'key2'},inplace=True)
  • 更改数据格式astype()
isin                 #计算一个“Series各值是否包含传入的值序列中”的布尔数组
unique               #返回唯一值的数组
value_counts         #返回一个Series,其索引为唯一值,值为频率,按计数降序排列

数据清洗

  • 丢弃值drop()
df.drop(labels, axis=1)# 按列(axis=1),丢弃指定label的列,默认按行。。。
  • 丢弃缺失值dropna()
# 默认axi=0(行);1(列),how=‘any’
df.dropna()#每行只要有空值,就将这行删除
df.dropna(axis=1)#每列只要有空值,整列丢弃
df.dropna(how='all')# 一行中全部为NaN的,才丢弃该行
df.dropna(thresh=3)# 每行至少3个非空值才保留
  • 缺失值填充fillna()
df.fillna(0)
df.fillna({1:0,2:0.5}) #对第一列nan值赋0,第二列赋值0.5
df.fillna(method='ffill') #在列方向上以前一个值作为值赋给NaN
  • 值替换replace()
# 将df的A列中 -999 全部替换成空值
df['A'].replace(-999, np.nan)
#-999和1000 均替换成空值
obj.replace([-999,1000],  np.nan)
# -999替换成空值,1000替换成0
obj.replace([-999,1000],  [np.nan, 0])
# 同上,写法不同,更清晰
obj.replace({-999:np.nan, 1000:0})
  • 重复值处理duplicated(),unique(),drop_duplictad()
df.duplicated()#两行每列完全一样才算重复,后面重复的为True,第一个和不重复的为false,返回true
               #和false组成的Series类型
df.duplicated('key')#两行key这一列一样就算重复

df['A'].unique()# 返回唯一值的数组(类型为array)

df.drop_duplicates(['k1'])# 保留k1列中的唯一值的行,默认保留第一行
df.drop_duplicates(['k1','k2'], take_last=True)# 保留 k1和k2 组合的唯一值的行,take_last=True 保留最后一行

排序

  • 索引排序
# 默认axis=0,按行索引对行进行排序;ascending=True,升序排序
df.sort_index()
# 按列名对列进行排序,ascending=False 降序
df.sort_index(axis=1, ascending=False) 
  • 值排序
# 按值对Series进行排序,使用order(),默认空值会置于尾部
s = pd.Series([4, 6, np.nan, 2, np.nan])
s.order()

df.sort_values(by=['a','b'])#按列进行排序
  • 排名
a=Series([7,-5,7,4,2,0,4])
a.rank()#默认method='average',升序排名(ascending=True),按行(axis=0)
#average 值相等时,取排名的平均值
#min 值相等时,取排名最小值
#max 值相等时,取排名最大值
#first值相等时,按原始数据出现顺序排名

索引设置

  • reindex() 更新index或者columns, 默认:更新index,返回一个新的DataFrame
# 返回一个新的DataFrame,更新index,原来的index会被替代消失
# 如果dataframe中某个索引值不存在,会自动补上NaN
df2 = df1.reindex(['a','b','c','d','e'])

# fill_valuse为原先不存在的索引补上默认值,不在是NaN
df2 = df1.reindex(['a','b','c','d','e'],  fill_value=0)

# inplace=Ture,在DataFrame上修改数据,而不是返回一个新的DataFrame
df1.reindex(['a','b','c','d','e'],  inplace=Ture)

# reindex不仅可以修改 索引(行),也可以修改列
states = ["Texas","Utah","California"]
df2 = df1.reindex( columns=states )
  • set_index() 将DataFrame中的列columns设置成索引index 打造层次化索引的方法
# 将columns中的其中两列:race和sex的值设置索引,race为一级,sex为二级
# inplace=True 在原数据集上修改的
adult.set_index(['race','sex'], inplace = True) 

# 默认情况下,设置成索引的列会从DataFrame中移除
# drop=False将其保留下来
adult.set_index(['race','sex'], inplace = True) 
  • reset_index() 将使用set_index()打造的层次化逆向操作 既是取消层次化索引,将索引变回列,并补上最常规的数字索引
df.reset_index()

数据选取

  • [] 只能对行进 行(row/index) 切片,前闭后开df[0:3],df[:4],df[4:]
  • where 布尔查找
 df[df["A"]>7]
  • isin
# 返回布尔值
s.isin([1,2,3])
df['A'].isin([1,2,3])
df.loc[df['A'].isin([5.8,5.1])]选取列A中值为5.8,5.1的所有行组成dataframe
  • query 多个where整合切片,&:于,|:或 
 df.query(" A>5.0 & (B>3.5 | C<1.0) ") 
  • loc :根据名称Label切片
# df.loc[A,B] A是行范围,B是列范围
df.loc[1:4,['petal_length','petal_width']]

# 需求1:创建一个新的变量 test
# 如果sepal_length > 3 test = 1 否则 test = 0
df.loc[df['sepal_length'] > 6, 'test'] = 1
df.loc[df['sepal_length'] <=6, 'test'] = 0

# 需求2:创建一个新变量test2 
# 1.petal_length>2 and petal_width>0.3 = 1 
# 2.sepeal_length>6 and sepal_width>3 = 2 3.其他 = 0
df['test2'] = 0
df.loc[(df['petal_length']>2)&(df['petal_width']>0.3), 'test2'] = 1
df.loc[(df['sepal_length']>6)&(df['sepal_width']>3), 'test2'] = 2
  • iloc:切位置
df.iloc[1:4,:]
  • ix:混切 名称和位置混切,但效率低,少用
df1.ix[0:3,['sepal_length','petal_width']]
  • map与lambda
alist = [1,2,3,4]
map(lambda s : s+1, alist)#map就是将自定义函数应用于Series每个元素

df['sepal_length'].map(lambda s:s*2+1)[0:3]
  • apply和applymap apply和applymap是对dataframe的操作,前者操作一行或者一列,后者操作每个元素
These are techniques to apply function to element, column or dataframe.

Map: It iterates over each element of a series. 
df[‘column1’].map(lambda x: 10+x), this will add 10 to each element of column1.
df[‘column2’].map(lambda x: ‘AV’+x), this will concatenate “AV“ at the beginning of each element of column2 (column format is string).

Apply: As the name suggests, applies a function along any axis of the DataFrame.
df[[‘column1’,’column2’]].apply(sum), it will returns the sum of all the values of column1 and column2.
df0[['data1']].apply(lambda s:s+1)

ApplyMap: 对dataframe的每一个元素施加一个函数
func = lambda x: x+2
df.applymap(func), dataframe每个元素加2 (所有列必须数字类型)
  • contains
# 使用DataFrame模糊筛选数据(类似SQL中的LIKE)
# 使用正则表达式进行模糊匹配,*匹配0或无限次,?匹配0或1次
df_obj[df_obj['套餐'].str.contains(r'.*?语音CDMA.*')] 

# 下面两句效果一致
df[df['商品名称'].str.contains("四件套")]
df[df['商品名称'].str.contains(r".*四件套.*")]

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • pandas进阶

    李智
  • Mysql学习(基本指令、语句)

      1) 数值   int //int(3)与长度无关,不够3位前面补0,默认看不见     float   2) 字符串 ...

    李智
  • leetcode(43)Multiply Strings

    Given two non-negative integers num1 and num2 represented as strings, return the...

    李智
  • 用 Pandas 进行数据处理系列 二

    获取行操作df.loc[3:6]获取列操作df['rowname']取两列df[['a_name','bname']] ,里面需要是一个 list 不然会报错增...

    zucchiniy
  • Python中字段抽取、字段拆分、记录抽取

    1、字段抽取 字段抽取是根据已知列数据的开始和结束位置,抽取出新的列 字段截取函数:slice(start,stop) 注意:和数据结构的访问方式一样,开始位置...

    Erin
  • 【MathorCup】2020年 A题 无车承运人平台线路定价问题,特征间的相关性分析

    问题 1:通过定量分析的方法,研究影响无车承运人平台进行货运线路定价的主要因素有哪些,并说明理由。 问题 2:根据附件 1 数据,通过建立数学模型,对已经成交...

    不太灵光的程序员
  • Pandas进阶修炼120题,给你深度和广度的船新体验

    本文为你介绍Pandas基础、Pandas数据处理、金融数据处理等方面的一些习题。

    数据派THU
  • Day05| 第四期-电商数据分析

    疫情期间,想必我们会增加网上购物,人们的生活越来越数字化。当我们消费时,无论是线上和线下都会产生大量的交易数据,对于商家来说数字化的运营方式非常必要,从大量的交...

    DataScience
  • Pandas 数据分析: 3 种方法实现一个实用小功能

    与时间相关,自然第一感觉便是转化为datetime格式,这里需要注意:需要首先将两列转化为 str 类型。

    double
  • 使用pandas筛选出指定列值所对应的行

    该方法其实就是找出每一行中符合条件的真值(true value),如找出列A中所有值等于foo

    星星在线

扫码关注云+社区

领取腾讯云代金券