前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >OKHttp源码解析--初阶

OKHttp源码解析--初阶

作者头像
用户2802329
发布2018-08-07 14:59:04
8630
发布2018-08-07 14:59:04
举报
文章被收录于专栏:Android先生Android先生Android先生
作者:隔壁老李头

地址:http://www.jianshu.com/p/82f74db14a18

声明:本文是隔壁老李头原创,已获其授权发布,未经原作者允许请勿转载

这段时间老李的新公司要更换网络层,知道现在主流网络层的模式是RxJava+Retrofit+OKHttp,所以老李开始研究这三个项目的源代码,在更换网络层后,开始分享这个三个项目源码的分析。* 本篇文章 主要讲解OKHttp源码解析(3.7.0) OKHttp官网:http://square.github.io/okhttp/

github地址:https://github.com/square/okhttp

本文大体上分为11个部分

  • 1.OkHttp源码解析(一):OKHttp初阶
  • 2 OkHttp源码解析(二):OkHttp连接的"前戏"——HTTP的那些事
  • 3 OkHttp源码解析(三):OKHttp中阶之线程池和消息队列
  • 4 OkHttp源码解析(四):OKHttp中阶之拦截器及调用链
  • 5 OkHttp源码解析(五):OKHttp中阶之OKio简介
  • 6 OkHttp源码解析(六):OKHttp中阶之缓存基础
  • 7 OkHttp源码解析(七):OKHttp中阶之缓存机制
  • 8 OkHttp源码解析(八):OKHttp中阶之连接与请求值前奏
  • 9 OkHttp源码解析(九):OKHTTP连接中三个"核心"RealConnection、ConnectionPool、StreamAllocation
  • 10 OkHttp源码解析(十) OKHTTP中连接与请求
  • 11 OkHttp的感谢

本篇文章的主要内容如下:

1、OkHttp介绍

2、OkHttp使用

3、OkHttp流程源码跟踪

一、OKHTTP简介

  • 1.支持HTTP2/SPDY
  • 2.socket自动选择最好路线,并支持自动重连
  • 3.拥有自动维护的socket连接池,减少握手次数
  • 4.拥有队列线程池,轻松写并发
  • 5.拥有Interceptors轻松处理请求与响应(比如透明GZIP压缩)基于Headers的缓存策略

二、OKHTTP使用

1、GET请求
  OkHttpClient client = new OkHttpClient();

  Request request = new Request.Builder()
      .url(url)
      .build();

  Response response = client.newCall(request).execute();
  return response.body().string();
}

2、POST请求

   public static final MediaType JSON
    = MediaType.parse("application/json; charset=utf-8");

  OkHttpClient client = new OkHttpClient();

  RequestBody body = RequestBody.create(JSON, json);

  Request request = new Request.Builder()
      .url(url)
      .post(body)
      .build();

  Response response = client.newCall(request).execute();

  return response.body().string();
}

三、OKHTTP源码流程分析

(一)、OKHTTP 同步请求debug代码跟踪:

  OkHttpClient client = new OkHttpClient();
  Request request = new Request.Builder()
      .url(url)
      .build();
  Response response = client.newCall(request).execute();

从上面代码所示,先是new了一个OKHttpClient对象。

1、OKHttpClient类详解

OKHttpClient类就比较简单了:

  • 1、里面包含了很多对象,其实OKhttp的很多功能模块都包装进这个类,让这个类单独提供对外的API,这种外观模式的设计十分的优雅。外观模式。
  • 2、而内部模块比较多,就使用了Builder模式(建造器模式)。Builder模式(建造器模式)
  • 3、它的方法只有一个:newCall.返回一个Call对象(一个准备好了的可以执行和取消的请求)。

而大家仔细读源码又会发现构造了OKHttpClient后又new了一个Rquest对象。那么咱们就来看下Request,说道Request又不得不提Response。所以咱们一起讲了

2、Request、Response类详解
  • 1、Request、Response分别抽象成请求和相应
  • 2、其中Request包括Headers和RequestBody,而RequestBody是abstract的,他的子类是有FormBody (表单提交的)和 MultipartBody(文件上传),分别对应了两种不同的MIME类型 FormBody :"application/x-www-form-urlencoded" MultipartBody:"multipart/"+xxx.
  • 3、其中Response包括Headers和RequestBody,而ResponseBody是abstract的,所以他的子类也是有两个:RealResponseBody和CacheResponseBody,分别代表真实响应和缓存响应。
  • 4、由于RFC协议规定,所以所有的头部信息不是随便写的,request的header与response的header的标准都不同。具体的见 List of HTTP header fields。OKHttp的封装类Request和Response为了应用程序编程方便,会把一些常用的Header信息专门提取出来,作为局部变量。比如contentType,contentLength,code,message,cacheControl,tag...它们其实都是以name-value对的形势,存储在网络请求的头部信息中。

根据从上面的GET请求,显示用builder构建了Request对象,然后执行了OKHttpClient.java的newCall方法,那么咱们就看看这个newCall里面都做什么操作?

/**
   * Prepares the {@code request} to be executed at some point in the future.
   */
  @Override public Call newCall(Request request) {
    return new RealCall(this, request, false /* for web socket */);
  }

Call是个什么东西,那咱们看下Call这个类

3、Call类详解

Call: HTTP请求任务封装 可以说我们能用到的操纵基本上都定义在这个接口里面了,所以也可以说这个类是OKHttp类的核心类了。我们可以通过Call对象来操作请求了。而Call接口内部提供了Factory工厂方法模式(将对象的创建延迟到工厂类的子类去进行,从而实现动态配置) Call接口提供了内部接口Factory(用于将对象的创建延迟到该工厂类的子类中进行,从而实现动态的配置).

/**
 * A call is a request that has been prepared for execution. A call can be canceled. As this object
 * represents a single request/response pair (stream), it cannot be executed twice.
 */
public interface Call extends Cloneable {
  /** Returns the original request that initiated this call. */
  Request request();

  /**
   * Invokes the request immediately, and blocks until the response can be processed or is in
   * error.
   *
   * <p>To avoid leaking resources callers should close the {@link Response} which in turn will
   * close the underlying {@link ResponseBody}.
   *
   * <pre>@{code
   *
   *   // ensure the response (and underlying response body) is closed
   *   try (Response response = client.newCall(request).execute()) {
   *     ...
   *   }
   *
   * }</pre>
   *
   * <p>The caller may read the response body with the response's {@link Response#body} method. To
   * avoid leaking resources callers must {@linkplain ResponseBody close the response body} or the
   * Response.
   *
   * <p>Note that transport-layer success (receiving a HTTP response code, headers and body) does
   * not necessarily indicate application-layer success: {@code response} may still indicate an
   * unhappy HTTP response code like 404 or 500.
   *
   * @throws IOException if the request could not be executed due to cancellation, a connectivity
   * problem or timeout. Because networks can fail during an exchange, it is possible that the
   * remote server accepted the request before the failure.
   * @throws IllegalStateException when the call has already been executed.
   */
  Response execute() throws IOException;

  /**
   * Schedules the request to be executed at some point in the future.
   *
   * <p>The {@link OkHttpClient#dispatcher dispatcher} defines when the request will run: usually
   * immediately unless there are several other requests currently being executed.
   *
   * <p>This client will later call back {@code responseCallback} with either an HTTP response or a
   * failure exception.
   *
   * @throws IllegalStateException when the call has already been executed.
   */
  void enqueue(Callback responseCallback);

  /** Cancels the request, if possible. Requests that are already complete cannot be canceled. */
  void cancel();

  /**
   * Returns true if this call has been either {@linkplain #execute() executed} or {@linkplain
   * #enqueue(Callback) enqueued}. It is an error to execute a call more than once.
   */
  boolean isExecuted();

  boolean isCanceled();

  /**
   * Create a new, identical call to this one which can be enqueued or executed even if this call
   * has already been.
   */
  Call clone();

  interface Factory {
    Call newCall(Request request);
  }
}

在源码中,OKHttpClient实现了Call.Factory接口,返回了一个RealCall对象。那我们就来看下RealCall这个类

4、RealCall类详解
  • 1、OkHttpClient的newCall方法里面new了RealCall的对象,但是RealCall的构造函数需要传入一个OKHttpClient对象和Request对象(PS:第三个参数false表示不是webSokcet).因此RealCall包装了Request对象。所以RealCall可以很方便地使用这两个对象。
  • 2、RealCall里面的两个关键方法是:execute 和 enqueue。分别用于同步和异步得执行网络请求。
  • 3、RealCall还有一个重要方法是:getResponseWithInterceptorChain,添加拦截器,通过拦截器可以将一个流式工作分解为可配置的分段流程,既增加了灵活性也实现了解耦,关键还可以自有配置,非常完美。

所以client.newCall(request).execute();实际上执行的是RealCall的execute方法,现在咱们再回来看下RealCall的execute的具体实现

    @Override
    public Response execute() throws IOException {
        synchronized (this) {
            if (executed) throw new IllegalStateException("Already Executed");
            executed = true;
        }
        captureCallStackTrace();
        try {
            client.dispatcher().executed(this);
            Response result = getResponseWithInterceptorChain();
            if (result == null) throw new IOException("Canceled");
            return result;
        } finally {
            client.dispatcher().finished(this);
        }
    }

首先是

        synchronized (this) {
            if (executed) throw new IllegalStateException("Already Executed");
            executed = true;
        }

判断call是否执行过,可以看出每个Call对象只能使用一次原则。然后调用了captureCallStackTrace()方法。

  private void captureCallStackTrace() {
    Object callStackTrace = Platform.get().getStackTraceForCloseable("response.body().close()");
    retryAndFollowUpInterceptor.setCallStackTrace(callStackTrace);
  }

RealCall的captureCallStackTrace() 又调用了Platform.get().getStackTraceForCloseable()

public class Platform {
  public static Platform get() {
    return PLATFORM;
  }
  /**
   * Returns an object that holds a stack trace created at the moment this method is executed. This
   * should be used specifically for {@link java.io.Closeable} objects and in conjunction with
   * {@link #logCloseableLeak(String, Object)}.
   */
  public Object getStackTraceForCloseable(String closer) {
    if (logger.isLoggable(Level.FINE)) {
      return new Throwable(closer); // These are expensive to allocate.
    }
    return null;
  }
}

其实是调用AndroidPlatform. getStackTraceForCloseable(String closer)方法。这里就不详细说了,后面详细说。

然后retryAndFollowUpInterceptor.setCallStackTrace(),在这个方法里面什么都没做就是set一个object进去

public final class RetryAndFollowUpInterceptor implements Interceptor {
  public void setCallStackTrace(Object callStackTrace) {
    this.callStackTrace = callStackTrace;
  }
}

综上所示captureCallStackTrace()这个方法其实是捕获了这个请求的StackTrace。

然后进入了第一个核心类---Dispatcher的的execute方法了,由于下面是进入了关键部分,所以重点讲解下,代码如何:

    try {
      client.dispatcher().executed(this);
      Response result = getResponseWithInterceptorChain();
      if (result == null) throw new IOException("Canceled");
      return result;
    } finally {
      client.dispatcher().finished(this);
    }

看下OKHttpClient的dispatcher()方法的具体内容如下图

 //OKHttpClient.java
  public Dispatcher dispatcher() {
    return dispatcher;
  }

大家发现client.dispatcher()返回的是Dispatcher对象,那么这个Dispatcher对象是何时创建的那?在OkHttpClient.java里面Build类里面的构造函数里面,如下图

//OkHttpClient.java
public static final class Builder {
   //其它代码先忽略掉
    public Builder() {
      dispatcher = new Dispatcher();
      //其它代码先忽略掉
    }
}

所以默认执行Builder()放到时候就创建了一个Dispatcher。那么咱们看下dispatcher里面的execute()是如何处理的

  /** Used by {@code Call#execute} to signal it is in-flight. */
  synchronized void executed(RealCall call) {
    runningSyncCalls.add(call);
  }

里面发现是runningSyncCalls执行了add方法莫非runningSyncCalls是个list,咱们查看dispatcher里面怎么定义runningSyncCalls的。

/** Ready async calls in the order they'll be run. */
  private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>();

  /** Running asynchronous calls. Includes canceled calls that haven't finished yet. */
  private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>();

  /** Running synchronous calls. Includes canceled calls that haven't finished yet. */
  private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>();

原来runningSyncCalls是双向队列啊,突然发现Dispatcher里面定义了三个双向队列,看下注释,我们大概能明白readyAsyncCalls 是一个存放了等待执行任务Call的双向队列,runningAsyncCalls是一个存放异步请求任务Call的双向任务队列,runningSyncCalls是一个存放同步请求的双向队列。关于队列咱们在下篇文章里面详细介绍。

执行完client.dispatcher().executed(this);要走到getResponseWithInterceptorChain();方法了里面了,看下这个方法是具体做什么的?

Response getResponseWithInterceptorChain() throws IOException {
    // Build a full stack of interceptors.
    List<Interceptor> interceptors = new ArrayList<>();
    //添加开发者应用层自定义的Interceptor
    interceptors.addAll(client.interceptors());
    //这个Interceptor是处理请求失败的重试,重定向    
    interceptors.add(retryAndFollowUpInterceptor);
    //这个Interceptor工作是添加一些请求的头部或其他信息
    //并对返回的Response做一些友好的处理(有一些信息你可能并不需要)
    interceptors.add(new BridgeInterceptor(client.cookieJar()));
    //这个Interceptor的职责是判断缓存是否存在,读取缓存,更新缓存等等
    interceptors.add(new CacheInterceptor(client.internalCache()));
    //这个Interceptor的职责是建立客户端和服务器的连接
    interceptors.add(new ConnectInterceptor(client));
    if (!forWebSocket) {
      //添加开发者自定义的网络层拦截器
      interceptors.addAll(client.networkInterceptors());
    }
    interceptors.add(new CallServerInterceptor(forWebSocket));
    //一个包裹这request的chain
    Interceptor.Chain chain = new RealInterceptorChain(
        interceptors, null, null, null, 0, originalRequest);
    //把chain传递到第一个Interceptor手中
    return chain.proceed(originalRequest);
  }

发现 new了一个ArrayList,然后就是不断的add,后面 new了 RealInterceptorChain对象,最后调用了chain.proceed()方法。先看下RealInterceptorChain的构造函数。

public RealInterceptorChain(List<Interceptor> interceptors, StreamAllocation streamAllocation,
      HttpCodec httpCodec, RealConnection connection, int index, Request request) {
    this.interceptors = interceptors;
    this.connection = connection;
    this.streamAllocation = streamAllocation;
    this.httpCodec = httpCodec;
    this.index = index;
    this.request = request;
  }

发现什么都没做就是做了赋值操作,后面跟踪下chain.proceed()方法 由于Interceptor是个接口,所以应该是具体实现类RealInterceptorChain的proceed实现

public interface Interceptor {
  Response intercept(Chain chain) throws IOException;

  interface Chain {
    Request request();

    Response proceed(Request request) throws IOException;

    Connection connection();
  }
}
public final class RealInterceptorChain implements Interceptor.Chain{
  Response intercept(Chain chain) throws IOException;

      @Override 
      public Response proceed(Request request) throws IOException {
        return proceed(request, streamAllocation, httpCodec, connection);
      }

    public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
                            RealConnection connection) throws IOException {
        if (index >= interceptors.size()) throw new AssertionError();

        calls++;

        // If we already have a stream, confirm that the incoming request will use it.
        if (this.httpCodec != null && !this.connection.supportsUrl(request.url())) {
            throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
                    + " must retain the same host and port");
        }

        // If we already have a stream, confirm that this is the only call to chain.proceed().
        if (this.httpCodec != null && calls > 1) {
            throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
                    + " must call proceed() exactly once");
        }

        // Call the next interceptor in the chain.
        RealInterceptorChain next = new RealInterceptorChain(
                interceptors, streamAllocation, httpCodec, connection, index + 1, request);
        Interceptor interceptor = interceptors.get(index);
        Response response = interceptor.intercept(next);

        // Confirm that the next interceptor made its required call to chain.proceed().
        if (httpCodec != null && index + 1 < interceptors.size() && next.calls != 1) {
            throw new IllegalStateException("network interceptor " + interceptor
                    + " must call proceed() exactly once");
        }

        // Confirm that the intercepted response isn't null.
        if (response == null) {
            throw new NullPointerException("interceptor " + interceptor + " returned null");
        }

        return response;
    }

}

由于在构造RealInterceptorChain对象时候httpCodec直接赋予了null,所以下面代码直接略过。

// If we already have a stream, confirm that the incoming request will use it.
    if (this.httpCodec != null && !this.connection.supportsUrl(request.url())) {
      throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
          + " must retain the same host and port");
    }

    // If we already have a stream, confirm that this is the only call to chain.proceed().
    if (this.httpCodec != null && calls > 1) {
      throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
          + " must call proceed() exactly once");
    }

然后看到在proceed方面里面又new了一个RealInterceptorChain类的next对象,温馨提示下,里面的streamAllocation, httpCodec, connection都是null,所以这个next对象和chain最大的区别就是index属性值不同chain是0.而next是1,然后取interceptors下标为1的对象的interceptor。由从上文可知,如果没有开发者自定义的Interceptor时,首先调用的RetryAndFollowUpInterceptor,如果有开发者自己定义的interceptor则调用开发者interceptor。

这里重点说一下,由于后面的interceptor比较多,且涉及的也是重要的部分,而咱们这里主要是讲流程,所以这里就不详细和大家说了,由后面再详细讲解,后面的流程是在每一个interceptor的intercept方法里面都会调用chain.proceed()从而调用下一个interceptorintercept(next)方法,这样就可以实现遍历getResponseWithInterceptorChain里面interceptors的item,实现遍历循环,缩减后的代码如下:
//BridgeInterceptor.java
public Response intercept(Chain chain) throws IOException {
  //忽略部分代码
  Response networkResponse = chain.proceed(requestBuilder.build());
  //忽略部分代码
}
//CacheInterceptor.java
public Response intercept(Chain chain) throws IOException {
   //忽略部分代码
   networkResponse = chain.proceed(networkRequest);
   //忽略部分代码
}
//ConnectInterceptor.java
public Response intercept(Chain chain) throws IOException {
     //忽略部分代码
     return realChain.proceed(request, streamAllocation, httpCodec, connection);
}

读过源码我们知道getResponseWithInterceptorChain里面interceptors的最后一个item是CallServerInterceptor.java,最后一个Interceptor(即CallServerInterceptor)里面是直接返回了response 而不是进行继续递归,具体里面是通过OKio实现的,具体代码,等后面再详细说明,CallServerInterceptor返回response后返回给上一个interceptor,一般是开发者自己定义的networkInterceptor,然后开发者自己的networkInterceptor把他的response返回给前一个interceptor,依次以此类推返回给第一个interceptor,这时候又回到了realCall里面的execute()里面了,代码如下:

@Override 
  public Response execute() throws IOException {
    synchronized (this) {
      if (executed) throw new IllegalStateException("Already Executed");
      executed = true;
    }
    captureCallStackTrace();
    try {
      client.dispatcher().executed(this);
      Response result = getResponseWithInterceptorChain();
      if (result == null) throw new IOException("Canceled");
      return result;
    } finally {
      client.dispatcher().finished(this);
    }
  }
最后把response返回给get请求的返回值。至此整体GET请求的大体流程就已经结束了。(PS:最后别忘记走client.dispatcher().finished(this))

大体流程如下图:

(二)、OKHTTP 异步请求debug代码跟踪:

OkHttpClient client = new OkHttpClient();

String run(String url) throws IOException {
  Request request = new Request.Builder()
      .url(url)
      .build();

  Response response = client.newCall(request).enqueue(new Callback() {
        @Override
        public void onFailure(Call call, IOException e) {
        }
        @Override
        public void onResponse(Call call, Response response) throws IOException {
        }
    });

前面和同步一样new了一个OKHttp和Request。这块和同步一样就不说了,那么说说和同步不一样的地方,后面异步进入enqueue()方法

//RealCall.java
  @Override public void enqueue(Callback responseCallback) {
    synchronized (this) {
      if (executed) throw new IllegalStateException("Already Executed");
      executed = true;
    }
    captureCallStackTrace();
    client.dispatcher().enqueue(new AsyncCall(responseCallback));
  }

由于executed默认为false,所以先进行判断是否为true,为true则直接跑异常,没有则设置为true,可以看出executed这个是一个标志,标志这个请求是否已经正在请求中,合同步一样先调用了captureCallStackTrace();然后调用 client.dispatcher().enqueue(new AsyncCall(responseCallback));client.dispatcher()返回的是Dispatcher对象所以实际调用的是Dispatcher的enqueue(),那么咱们进入源码看下

//Dispatcher.java
  private int maxRequests = 64;
  private int maxRequestsPerHost = 5;

  synchronized void enqueue(AsyncCall call) {
  //如果正在执行的请求小于设定值即64,并且请求同一个主机的request小于设定值即5
    if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
      //添加到执行队列,开始执行请求
      runningAsyncCalls.add(call);
      //获得当前线程池,没有则创建一个
      executorService().execute(call);
    } else {
      //添加到等待队列中
      readyAsyncCalls.add(call);
    }
  }

根据源码和注释大家可以看到如果正在执行的异步请求小于64,并且请求同一个主机小于5的时候就先往正在运行的队列里面添加这个call,然后用线程池去执行这个call,否则就把他放到等待队列里面。执行这个call的时候,自然会去走到这个call的run方法,那么咱们看下AsyncCall.java这个类,而AsyncCall.java又继承自NamedRunnable.java咱们就一起看下他们的源码

public abstract class NamedRunnable implements Runnable {
  protected final String name;

  public NamedRunnable(String format, Object... args) {
    this.name = Util.format(format, args);
  }

  @Override public final void run() {
    String oldName = Thread.currentThread().getName();
    Thread.currentThread().setName(name);
    try {
      execute();
    } finally {
      Thread.currentThread().setName(oldName);
    }
  }

  protected abstract void execute();
}

final class AsyncCall extends NamedRunnable {
    private final Callback responseCallback;

    AsyncCall(Callback responseCallback) {
      super("OkHttp %s", redactedUrl());
      this.responseCallback = responseCallback;
    }

    String host() {
      return originalRequest.url().host();
    }

    Request request() {
      return originalRequest;
    }

    RealCall get() {
      return RealCall.this;
    }

    @Override protected void execute() {
      boolean signalledCallback = false;
      try {
        Response response = getResponseWithInterceptorChain();
        if (retryAndFollowUpInterceptor.isCanceled()) {
          signalledCallback = true;
          responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
        } else {
          signalledCallback = true;
          responseCallback.onResponse(RealCall.this, response);
        }
      } catch (IOException e) {
        if (signalledCallback) {
          // Do not signal the callback twice!
          Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
        } else {
          responseCallback.onFailure(RealCall.this, e);
        }
      } finally {
        client.dispatcher().finished(this);
      }
    }
  }

上面看到NamedRunnable的构造方法设置了name在的run方法里面设定为当前线程的name,而NamedRunnable的run方法里面调用了它自己的抽象方法execute,由此可见NamedRunnable的作用就是设置了线程的name,然后回调子类的execute方法,那么我们来看下AsyncCall的execute方法。貌似好像又回到了之前同步的getResponseWithInterceptorChain()里面,根据返回的response来这只callback回调。所以我们得到了OKHTTP的大体流程,如下图:

四、OKHTTP类详解

大体核心类主要下图:

最后给大家看一下整体的流程图

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2017-11-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Android先生 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1、GET请求
  • (一)、OKHTTP 同步请求debug代码跟踪:
    • 1、OKHttpClient类详解
      • 2、Request、Response类详解
        • 3、Call类详解
          • 4、RealCall类详解
            • 这里重点说一下,由于后面的interceptor比较多,且涉及的也是重要的部分,而咱们这里主要是讲流程,所以这里就不详细和大家说了,由后面再详细讲解,后面的流程是在每一个interceptor的intercept方法里面都会调用chain.proceed()从而调用下一个interceptor的intercept(next)方法,这样就可以实现遍历getResponseWithInterceptorChain里面interceptors的item,实现遍历循环,缩减后的代码如下:
            相关产品与服务
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档