前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >用Python结合统计学知识进行数据探索分析

用Python结合统计学知识进行数据探索分析

作者头像
IT阅读排行榜
发布2018-08-17 10:49:53
1.1K0
发布2018-08-17 10:49:53
举报
文章被收录于专栏:华章科技华章科技
本文用Python统计模拟的方法,介绍四种常用的统计分布,包括离散分布:二项分布和泊松分布,以及连续分布:指数分布和正态分布,最后查看人群的身高和体重数据所符合的分布。

# 导入相关模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as sns %matplotlib inline %config InlineBackend.figure_format = 'retina'

随机数

计算机发明后,便产生了一种全新的解决问题的方式:使用计算机对现实世界进行统计模拟。该方法又称为“蒙特卡洛方法(Monte Carlo method)”,起源于二战时美国研制原子弹的曼哈顿计划,它的发明人中就有大名鼎鼎的冯·诺依曼。蒙特卡洛方法的名字来源也颇为有趣,相传另一位发明者乌拉姆的叔叔经常在摩洛哥的蒙特卡洛赌场输钱,赌博是一场概率的游戏,故而以概率为基础的统计模拟方法就以这一赌城命名了。

使用统计模拟,首先要产生随机数,在Python中,numpy.random 模块提供了丰富的随机数生成函数。比如生成0到1之间的任意随机数:

np.random.random(size=5) # size表示生成随机数的个数

array([ 0.32392203, 0.3373342 , 0.51677112, 0.28451491, 0.07627541])

又比如生成一定范围内的随机整数:

np.random.randint(1, 10, size=5) # 生成5个1到9之间的随机整数

array([5, 6, 9, 1, 7])

计算机生成的随机数其实是伪随机数,是由一定的方法计算出来的,因此我们可以按下面方法指定随机数生成的种子,这样的好处是以后重复计算时,能保证得到相同的模拟结果。

np.random.seed(123)

在NumPy中,不仅可以生成上述简单的随机数,还可以按照一定的统计分布生成相应的随机数。这里列举了二项分布、泊松分布、指数分布和正态分布各自对应的随机数生成函数,接下来我们分别研究这四种类型的统计分布。

  • np.random.binomial()
  • np.random.poisson()
  • np.random.exponential()
  • np.random.normal()

二项分布

二项分布是n个独立的是/非试验中成功的次数的概率分布,其中每次试验的成功概率为p。这是一个离散分布,所以使用概率质量函数(PMF)来表示k次成功的概率:

最常见的二项分布就是投硬币问题了,投n次硬币,正面朝上次数就满足该分布。下面我们使用计算机模拟的方法,产生10000个符合(n,p)的二项分布随机数,相当于进行10000次实验,每次实验投掷了n枚硬币,正面朝上的硬币数就是所产生的随机数。同时使用直方图函数绘制出二项分布的PMF图。

def plot_binomial(n,p): '''绘制二项分布的概率质量函数''' sample = np.random.binomial(n,p,size=10000) # 产生10000个符合二项分布的随机数 bins = np.arange(n+2) plt.hist(sample, bins=bins, align='left', normed=True, rwidth=0.1) # 绘制直方图 #设置标题和坐标 plt.title('Binomial PMF with n={}, p={}'.format(n,p)) plt.xlabel('number of successes') plt.ylabel('probability') plot_binomial(10, 0.5)

投10枚硬币,如果正面或反面朝上的概率相同,即p=0.5, 那么出现正面次数的分布符合上图所示的二项分布。该分布左右对称,最有可能的情况是正面出现5次。

但如果这是一枚作假的硬币呢?比如正面朝上的概率p=0.2,或者是p=0.8,又会怎样呢?我们依然可以做出该情况下的PMF图。

fig = plt.figure(figsize=(12,4.5)) #设置画布大小p1 = fig.add_subplot(121) # 添加第一个子图plot_binomial(10, 0.2) p2 = fig.add_subplot(122) # 添加第二个子图plot_binomial(10, 0.8)

这时的分布不再对称了,正如我们所料,当概率p=0.2时,正面最有可能出现2次;而当p=0.8时,正面最有可能出现8次。

泊松分布

泊松分布用于描述单位时间内随机事件发生次数的概率分布,它也是离散分布,其概率质量函数为:

比如你在等公交车,假设这些公交车的到来是独立且随机的(当然这不是现实),前后车之间没有关系,那么在1小时中到来的公交车数量就符合泊松分布。同样使用统计模拟的方法绘制该泊松分布,这里假设每小时平均来6辆车(即上述公式中lambda=6)。

lamb = 6sample = np.random.poisson(lamb, size=10000) # 生成10000个符合泊松分布的随机数bins = np.arange(20) plt.hist(sample, bins=bins, align='left', rwidth=0.1, normed=True) # 绘制直方图# 设置标题和坐标轴plt.title('Poisson PMF (lambda=6)') plt.xlabel('number of arrivals') plt.ylabel('probability') plt.show()

指数分布

指数分布用以描述独立随机事件发生的时间间隔,这是一个连续分布,所以用质量密度函数表示:

比如上面等公交车的例子,两辆车到来的时间间隔,就符合指数分布。假设平均间隔为10分钟(即1/lambda=10),那么从上次发车开始,你等车的时间就满足下图所示的指数分布。

tau = 10sample = np.random.exponential(tau, size=10000) # 产生10000个满足指数分布的随机数plt.hist(sample, bins=80, alpha=0.7, normed=True) #绘制直方图plt.margins(0.02) # 根据公式绘制指数分布的概率密度函数lam = 1 / tau x = np.arange(0,80,0.1) y = lam * np.exp(- lam * x) plt.plot(x,y,color='orange', lw=3)#设置标题和坐标轴plt.title('Exponential distribution, 1/lambda=10') plt.xlabel('time') plt.ylabel('PDF') plt.show()

正态分布

正态分布是一种很常用的统计分布,可以描述现实世界的诸多事物,具备非常漂亮的性质,我们在下一讲参数估计之中心极限定理时会详细介绍。其概率密度函数为:

以下绘制了均值为0,标准差为1的正态分布的概率密度曲线,其形状好似一口倒扣的钟,因此也称钟形曲线。

def norm_pdf(x,mu,sigma): '''正态分布概率密度函数''' pdf = np.exp(-((x - mu)**2) / (2* sigma**2)) / (sigma * np.sqrt(2*np.pi)) return pdf mu = 0 # 均值为0sigma = 1 # 标准差为1# 用统计模拟绘制正态分布的直方图sample = np.random.normal(mu, sigma, size=10000) plt. hist(sample, bins=100, alpha=0.7, normed=True)# 根据正态分布的公式绘制PDF曲线x = np.arange(-5, 5, 0.01) y = norm_pdf(x, mu, sigma) plt.plot(x,y, color='orange', lw=3) plt.show()

身高、体重的分布

以上从计算机模拟的角度出发,介绍了四种分布,现在让我们看一下现实中的数据分布。继续上一讲数据探索之描述性统计中使用的BRFSS数据集,我们查看其中的身高和体重数据,看看他们是不是满足正态分布。

首先导入数据,并编写绘制PDF和CDF图的函数 plot_pdf_cdf(),便于重复使用。

# 导入BRFSS数据import brfss df = brfss.ReadBrfss() height = df.height.dropna() weight = df.weight.dropna()

def plot_pdf_cdf(data, xbins, xrange, xlabel): '''绘制概率密度函数PDF和累积分布函数CDF''' fig = plt.figure(figsize=(16,5)) # 设置画布尺寸 p1 = fig.add_subplot(121) # 添加第一个子图 # 绘制正态分布PDF曲线 std = data.std() mean = data.mean() x = np.arange(xrange[0], xrange[1], (xrange[1]-xrange[0])/100) y = norm_pdf(x, mean, std) plt.plot(x,y, label='normal distribution') # 绘制数据的直方图 plt.hist(data, bins=xbins, range=xrange, rwidth=0.9, alpha=0.5, normed=True, label='observables') # 图片设置 plt.legend() plt.xlabel(xlabel) plt.title(xlabel +' PDF') p2 = fig.add_subplot(122) #添加第二个子图 # 绘制正态分布CDF曲线 sample = np.random.normal(mean, std, size=10000) plt.hist(sample, cumulative=True, bins=1000, range=xrange, normed=True, histtype='step', lw=2, label='normal distribution') # 绘制数据的CDF曲线 plt.hist(data, cumulative=True, bins=1000, range=xrange, normed=True, histtype='step', lw=2, label='observables') #图片设置 plt.legend(loc='upper left') plt.xlabel(xlabel) plt.title( xlabel + ' CDF') plt.show()

人群的身高分布比较符合正态分布。

plot_pdf_cdf(data=height, xbins=21, xrange=(1.2, 2.2), xlabel='height')

但是体重分布明显右偏,与对称的正态分布存在一定的差异。

plot_pdf_cdf(data=weight, xbins=60, xrange=(0,300), xlabel='weight')

将体重数据取对数值后,其分布就与正态分布非常吻合。

log_weight = np.log(weight) plot_pdf_cdf(data=log_weight, xbins=53, xrange=(3,6), xlabel='log weight')


参考资料:

  • 维基百科:蒙特卡罗方法
  • 《Think Stats 2》
  • 《统计学》,William Mendenhall著

来源:PPV课大数据

END

投稿和反馈请发邮件至hzzy@hzbook.com。转载大数据公众号文章,请向原文作者申请授权,否则产生的任何版权纠纷与大数据无关。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2017-10-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 大数据DT 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 二项分布
  • 泊松分布
  • 指数分布
  • 正态分布
  • 身高、体重的分布
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档