专栏首页Python疯子python最全画地图,可视化数据,pyecharts画图<一>

python最全画地图,可视化数据,pyecharts画图<一>

有时我们会很希望把数据展示在地图上,来做数据可视化,使数据更加清晰明了,可谓一图胜百文。先说说我用地图做什么了:微信好友全国分布,显示票房省份数据,全国评分显示等等,我这个语言能力很是头疼啊,进入正题吧!

中国地图.png

这里选用的是pyecharts模块,虽然python有自带的画图模块,matplotlib,但他是静态图,后来发现了pyecharts模块,瞬间爱上了这个模块,这种动态效果,数据好处理,简直简直太好用了,后面我会继续更新该模块其他画图功能 在使用地图前需要安装一下适合自己的地图包: 要记得安装对应的地图拓展:

选择自己需要的安装
$ pip install echarts-countries-pypkg
$ pip install echarts-china-provinces-pypkg
$ pip install echarts-china-cities-pypkg
$ pip install echarts-china-counties-pypkg
$ pip install echarts-china-misc-pypkg
$ pip install echarts-united-kingdom-pypkg

主要地图来源于这两个 Map, Geo

from pyecharts import Map, Geo

先定义一下数据

# 世界地图数据
value = [95.1, 23.2, 43.3, 66.4, 88.5]
attr= ["China", "Canada", "Brazil", "Russia", "United States"]

# 省和直辖市
province_distribution = {'河南': 45.23, '北京': 37.56, '河北': 21, '辽宁': 12, '江西': 6, '上海': 20, '安徽': 10, '江苏': 16, '湖南': 9, '浙江': 13, '海南': 2, '广东': 22, '湖北': 8, '黑龙江': 11, '澳门': 1, '陕西': 11, '四川': 7, '内蒙古': 3, '重庆': 3, '云南': 6, '贵州': 2, '吉林': 3, '山西': 12, '山东': 11, '福建': 4, '青海': 1, '舵主科技,质量保证': 1, '天津': 1, '其他': 1}
provice=list(province_distribution.keys())
values=list(province_distribution.values())

# 城市 -- 指定省的城市 xx市
city = ['郑州市', '安阳市', '洛阳市', '濮阳市', '南阳市', '开封市', '商丘市', '信阳市', '新乡市']
values2 = [1.07, 3.85, 6.38, 8.21, 2.53, 4.37, 9.38, 4.29, 6.1]

# 区县 -- 具体城市内的区县  xx县
quxian = ['夏邑县', '民权县', '梁园区', '睢阳区', '柘城县', '宁陵县']
values3 = [3, 5, 7, 8, 2, 4]
世界地图:
map0 = Map("世界地图示例", width=1200, height=600)
map0.add("世界地图", attr, value, maptype="world",  is_visualmap=True, visual_text_color='#000')
map0.render(path="./data/04-00世界地图.html")

世界地图

中国地图
# maptype='china' 只显示全国直辖市和省级
# 数据只能是省名和直辖市的名称
map = Map("中国地图",'中国地图', width=1200, height=600)
map.add("", provice, values, visual_range=[0, 50],  maptype='china', is_visualmap=True,
    visual_text_color='#000')
map.show_config()
map.render(path="./data/04-01中国地图.html")

中国地图.png

省份地图
# 河南地图  数据必须是省内放入城市名
map2 = Map("河南地图",'河南', width=1200, height=600)
map2.add('河南', city, values2, visual_range=[1, 10], maptype='河南', is_visualmap=True, visual_text_color='#000')
map2.show_config()
map2.render(path="./data/04-02河南地图.html")

省份地图

区县地图
# # 商丘地图 数据为商丘市下的区县
map3 = Map("商丘地图",'商丘', width=1200, height=600)
map3.add("商丘", quxian, values3, visual_range=[1, 10], maptype='商丘', is_visualmap=True,
    visual_text_color='#000')
map3.render(path="./data/04-03商丘地图.html")

区县地图.png

下面的这两个可直接使用全国城市
热力分布图
data = [
("海门", 9),("鄂尔多斯", 12),("招远", 12),("舟山", 12),("齐齐哈尔", 14),("盐城", 15),
("赤峰", 16),("青岛", 18),("乳山", 18),("金昌", 19),("泉州", 21),("莱西", 21),
("日照", 21),("胶南", 22),("南通", 23),("拉萨", 24),("云浮", 24),("梅州", 25)]

attr, value = geo.cast(data)

geo = Geo("全国主要城市空气质量热力图", "data from pm2.5", title_color="#fff", title_pos="center", width=1200, height=600, background_color='#404a59')

geo.add("空气质量热力图", attr, value, visual_range=[0, 25], type='heatmap',visual_text_color="#fff", symbol_size=15, is_visualmap=True, is_roam=False)
geo.show_config()
geo.render(path="./data/04-04空气质量热力图.html")

热力分布图.png

# 空气质量评分
indexs = ['上海', '北京', '合肥', '哈尔滨', '广州', '成都', '无锡', '杭州', '武汉', '深圳', '西安', '郑州', '重庆', '长沙']
values = [4.07, 1.85, 4.38, 2.21, 3.53, 4.37, 1.38, 4.29, 4.1, 1.31, 3.92, 4.47, 2.40, 3.60]


geo = Geo("全国主要城市空气质量评分", "data from pm2.5", title_color="#fff", title_pos="center", width=1200, height=600, background_color='#404a59')

# type="effectScatter", is_random=True, effect_scale=5  使点具有发散性
geo.add("空气质量评分", indexs, values, type="effectScatter", is_random=True, effect_scale=5, visual_range=[0, 5],visual_text_color="#fff", symbol_size=15, is_visualmap=True, is_roam=False)
geo.show_config()
geo.render(path="./data/04-05空气质量评分.html")

空气质量评分.png

如果地图显示不全或只显示南海诸岛问题,请查看我的这篇文章: https://www.jianshu.com/p/20fd061d0b96

支持保存做种格式 对象.render(path='snapshot.html') 对象.render(path='snapshot.png') 对象.render(path='snapshot.pdf') 举个栗子:

bar = Bar("我的第一个图表", "这里是副标题")
bar.add("服装", ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"], [5, 20, 36, 10, 75, 90])
# bar.print_echarts_options()
bar.render(path='snapshot.html')
bar.render(path='snapshot.png')
bar.render(path='snapshot.pdf')

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 精选11条知乎干货回答,保证让你看到就是赚到

    为了方便读者朋友,决定把我在知乎上一些的个人觉得干货比较多,比较受欢迎的回答整合起来,方便大家查阅!

    谭庆波
  • 吴恩达深度学习笔记 2.10~2.18 向量化与python

    对于非向量化,我们要求得z的值,必须用到for循环,但是当数据量非常庞大的时候,for循环所用的时间会比较多,这个时候可以使用向量运算来提高速度

    Dar_Alpha
  • My First Blog

    技术小黑屋
  • 2. Jetson TX2--python3下编译安装opencv3.4

    jetpack3.2自带了opencv3.3,但是只提供了python2.7的编译版本,所以也只能在python2.7下使用,我本来以为有什么更简单的方法链接到...

    和蔼的zhxing
  • 自学Python一 迷茫中的开端!

      有心学习一下Python,多门技术多条路啊。经历了找教程,看代码,写demo,这东西入门容易精通难啊!又因为请了两周婚假彻底忘光光。想了想自己还是边复习边写...

    叁金
  • 吴恩达深度学习 course4 卷积神经网络

    传统的神经网络所存在的问题:图片的输入维度比较大,具体如下图所示,这就造成了权重w的维度比较大,那么他所占用的内存也会比较大,计算w的计算量也会很大

    Dar_Alpha
  • 吴恩达深度学习笔记 3.1~3.11 浅层神经网络

    神经网络的结构与逻辑回归类似,只是神经网络的层数比逻辑回归多了一层,多出的中间一层叫隐藏层,那么,神经网络的计算就相当于多进行一次逻辑回归的计算

    Dar_Alpha
  • 牛客网 python (1)

    1. python my.py v1 v2 命令运行脚本,通过 from sys import argv如何获得v2的参数值? 

  • Python读取大文件的"坑“与内存占用检测

    随手搜索python读写文件的教程,很经常看到read()与readlines()这对函数。所以我们会常常看到如下代码:

    HappenLee
  • 自学Python十二 战斗吧Scrapy!

    Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。

    叁金

扫码关注云+社区

领取腾讯云代金券