Android 的消息机制

先来谈谈 ThreadLocal

简介

ThreadLocal 是一个线程内部的数据存储类,通过他可以在指定的线程中存储数据,数据存储以后,只有在指定线程中可以获取到存储的数据,对于其他线程来说则无法获取到数据。

使用场景

某些数据以线程为作用域并且不同线程具有不同的数据副本

举个栗子

public final class Looper {
    /*
     * API Implementation Note:
     *
     * This class contains the code required to set up and manage an event loop
     * based on MessageQueue.  APIs that affect the state of the queue should be
     * defined on MessageQueue or Handler rather than on Looper itself.  For example,
     * idle handlers and sync barriers are defined on the queue whereas preparing the
     * thread, looping, and quitting are defined on the looper.
     */

    private static final String TAG = "Looper";

    // sThreadLocal.get() will return null unless you've called prepare().
    static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();

Handler 需要获取当前线程的 Looper,这时候 Looper 的作用域就是线程并且不同线程具有不同的 Looper。

通过一个小 Demo 测试下

public class Main {

    private static ThreadLocal<String> mThreadLocal = new ThreadLocal<String>();


    public static void main(String[] args) {

        printInMainThread();

        printInThreadOne();

        printInThreadTwo();
    }

    private static void printInMainThread() {
        mThreadLocal.set("main thread");
        System.out.println("[Thread#main] mThreadLocal = " + mThreadLocal.get());
    }

    private static void printInThreadTwo() {
        new Thread("Thread#1") {
            @Override
            public void run() {
                mThreadLocal.set("thread 1");
                System.out.println("[Thread#1] mThreadLocal = " + mThreadLocal.get());
            }
        }.start();
    }

    private static void printInThreadOne() {
        new Thread("Thread#2") {
            @Override
            public void run() {
                mThreadLocal.set("thread 2");
                System.out.println("[Thread#2] mThreadLocal = " + mThreadLocal.get());
            }
        }.start();
    }

}

从控制台输出可以看到,虽然在不同的线程中访问的是同一个 ThreadLocal,但是通过 ThreadLocal.get( ) 这个方法得到的却是不一样的,这就很有趣了!

源码分析

ThreadLocal 的 set( ) 方法,如下:

public void set(T value) {
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);
    if (map != null)
        map.set(this, value);
    else
        createMap(t, value);
}

根据当前线程调用 getMap(Thread t) 方法找到对应的 ThreadLocalMap,如果 map 不等于 null,则调用 ThreadLocalMap 的 set(ThreadLocal<?> key, Object value) 方法。

NOTE: ThreadLocalMap 是 ThreadLocal 的一个静态内部类

看下这个 set(ThreadLocal<?> key, Object value) 方法:

private void set(ThreadLocal<?> key, Object value) {

        Entry[] tab = table;
        int len = tab.length;
        int i = key.threadLocalHashCode & (len-1);

        for (Entry e = tab[i];
             e != null;
             e = tab[i = nextIndex(i, len)]) {
            ThreadLocal<?> k = e.get();

            if (k == key) {
                e.value = value;
                return;
            }

            if (k == null) {
                replaceStaleEntry(key, value, i);
                return;
            }
        }

        tab[i] = new Entry(key, value);
        int sz = ++size;
        if (!cleanSomeSlots(i, sz) && sz >= threshold)
            rehash();
    }

Entry 是 ThreadLocalMap 的一个静态内部类,如下:

static class ThreadLocalMap {

 // ...省略N行注释

static class Entry extends WeakReference<ThreadLocal<?>> {
  
        Object value;
        
        Entry(ThreadLocal<?> k, Object v) {
            super(k);
            value = v;
        }
    }

NOTE:这里 ThreadMap 在选择 key 的时候并没有直接选择 ThreadLocal 实例,而是 ThreadLocal 实例的弱引用

再看看 ThreadLocal 的 get() 方法和 ThreadLocalMap 的 getEntry(ThreadLocal<?> key) 方法

public T get() {
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);
    if (map != null) {
        ThreadLocalMap.Entry e = map.getEntry(this);
        if (e != null) {
            @SuppressWarnings("unchecked")
            T result = (T)e.value;
            return result;
        }
    }
    return setInitialValue();
}

private Entry getEntry(ThreadLocal<?> key) {
        int i = key.threadLocalHashCode & (table.length - 1);
        Entry e = table[i];
        if (e != null && e.get() == key)
            return e;
        else
            return getEntryAfterMiss(key, i, e);
}

根据当前线程找到对应的 ThreadLocalMap,如果 map 不等于空,接着调用 ThreadLocalMap 的 getEntry(ThreadLocal<?> key) 方法得到对应的 ThreadLocalMap.Entry 。如果 map 等于空,则调用 setInitialValue() 提供的值(默认是 null)。

protected T initialValue() {
     return null;
}

该方法可以由开发者来重写,提供一个初始值。

搞基三剑客

开发者日常接触最多的可能是 Handler,而支撑 Handler 运行机制的实际上还有 MessageQueue 和 Looper 这两个好基友。

MessageQueue

中文名称消息队列,实际上的数据结构并不是队列,而是一个链表,主要支持两个操作——消息入队和消息出队。

入队操作对应的方法

boolean enqueueMessage(Message msg, long when) {

        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

出队操作对应的方法

Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

Looper

字面意思,循环者,在 Android 的消息机制中扮演的是消息循环的角色。具体来说,是它负责从 MessageQueue 中查看是否有新的消息投递进来,如果有则立即处理;如果没有,就会阻塞在哪里。

构造方法

private Looper(boolean quitAllowed) {
    mQueue = new MessageQueue(quitAllowed);
    mThread = Thread.currentThread();
}

在构造方法中创建了一个 MessageQueue。

prepare( ) 方法

初学 Android 的时候我们经常会写这样的一段代码,如下:

new Thread() {
  @Override public void run() {
    Looper.prepare();
    Handler handler = new Handler() {
      @Override public void handleMessage(Message msg) {
        //  do some hard work
      }
    };
    Looper.loop();
  }
}.start();

如果没有调用 Looper.prepare( ) 这个方法,应用就会 Crash。

public static void prepare() {
    prepare(true);
}

private static void prepare(boolean quitAllowed) {
    if (sThreadLocal.get() != null) {
        throw new RuntimeException("Only one Looper may be created per thread");
    }
    sThreadLocal.set(new Looper(quitAllowed));
}

很明显,每一个线程只允许有一个 Looper,否则就会抛出 RuntimeException

接下来,Looper 中最重要的一个方法 loop(),如下所示:

public static void loop() {
    final Looper me = myLooper();
    if (me == null) {
        throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
    }
    final MessageQueue queue = me.mQueue;

    // Make sure the identity of this thread is that of the local process,
    // and keep track of what that identity token actually is.
    Binder.clearCallingIdentity();
    final long ident = Binder.clearCallingIdentity();

    for (;;) {
        Message msg = queue.next(); // might block
        if (msg == null) {
            // No message indicates that the message queue is quitting.
            return;
        }

        // This must be in a local variable, in case a UI event sets the logger
        final Printer logging = me.mLogging;
        if (logging != null) {
            logging.println(">>>>> Dispatching to " + msg.target + " " +
                    msg.callback + ": " + msg.what);
        }

        final long traceTag = me.mTraceTag;
        if (traceTag != 0) {
            Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
        }
        try {
            msg.target.dispatchMessage(msg);
        } finally {
            if (traceTag != 0) {
                Trace.traceEnd(traceTag);
            }
        }

        if (logging != null) {
            logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
        }

        // Make sure that during the course of dispatching the
        // identity of the thread wasn't corrupted.
        final long newIdent = Binder.clearCallingIdentity();
        if (ident != newIdent) {
            Log.wtf(TAG, "Thread identity changed from 0x"
                    + Long.toHexString(ident) + " to 0x"
                    + Long.toHexString(newIdent) + " while dispatching to "
                    + msg.target.getClass().getName() + " "
                    + msg.callback + " what=" + msg.what);
        }

        msg.recycleUnchecked();
    }
}

loop() 方法内是一个死循环,唯一能跳出的条件是 MessageQueue.next() 返回了 null,否则 loop 将会无限循环下去。注意,loop 方法调用的 MessageQueue.next() 是一个阻塞操作,没有消息时,会阻塞在那里,这也是loop 会阻塞的原因。

PS:关于 Looper 的阻塞,很多人还会产生这么一个疑问

注意,这里的 msg.target 就是发送消息的 Handler 对象,所以,最后 Handler 发送的消息又交给了它的 dispatchMessage() 方法处理!记得第一次看这个逻辑的时候我也是懵逼的,为毛绕这么大一个圈消息又交给自己处理,MDZZ!实际上,仔细看的话会发现,这时候 msg.target.dispatchMessage() 这个方法是在创建 Handler 的子线程中执行的!简单来说,代码巧妙地切换到指定的这个新线程中去执行了

Handler

构造方法

public Handler() {
    this(null, false);
}

public Handler(Callback callback, boolean async) {
    if (FIND_POTENTIAL_LEAKS) {
        final Class<? extends Handler> klass = getClass();
        if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                (klass.getModifiers() & Modifier.STATIC) == 0) {
            Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                klass.getCanonicalName());
        }
    }

    mLooper = Looper.myLooper();
    if (mLooper == null) {
        throw new RuntimeException(
            "Can't create handler inside thread that has not called Looper.prepare()");
    }
    mQueue = mLooper.mQueue;
    mCallback = callback;
    mAsynchronous = async;
}

Handler 默认的构造方法会检查 Looper 是否为空,如果为空则会报错 Can’t create handler inside thread that has not called Looper.prepare()

至于为毛在 Activity 我们创建 Handler 实例的时候没有报错呢?因为在 ActivityThread 中已经调用了 Looper.prepareMainLooper(),如下所示:

public static void main(String[] args) {
    // 省略N行...
    
    Looper.prepareMainLooper();

    // 省略N行...
    Looper.loop();
}

prepareMainLooper() 正调用了 prepare(),如下所示:

public static void prepareMainLooper() {
    prepare(false);
    synchronized (Looper.class) {
        if (sMainLooper != null) {
            throw new IllegalStateException("The main Looper has already been prepared.");
        }
        sMainLooper = myLooper();
    }
}

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏码匠的流水账

聊聊storm的IEventLogger

storm-2.0.0/storm-client/src/jvm/org/apache/storm/metric/IEventLogger.java

14730
来自专栏曾大稳的博客

Android ClassLoader流程解读并简单方式实现热更新

ClassLoader在启动Activity的时候会调用loadClass方法,我们就从这里入手:

31420
来自专栏技术栈大杂烩

Python的Sequence切片下标问题

在python中, 切片是一个经常会使用到的语法, 不管是元组, 列表还是字符串, 一般语法就是:

13020
来自专栏androidBlog

AsyncTask 使用及封装实践

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/gdutxiaoxu/article/details/...

19210
来自专栏计算机视觉与深度学习基础

Leetcode 28 Implement strStr() KMP算法

Implement strStr(). Returns the index of the first occurrence of needle in hay...

21590
来自专栏后端沉思录

浅析ThreadLocal

上图可以看出ThreadLocal类中通过ThreadLocalMap去存储,ThreadLocalMap中的存储结构为Entry数组.

10420
来自专栏码匠的流水账

FluxSink实例及解析

reactor-core-3.1.3.RELEASE-sources.jar!/reactor/core/publisher/FluxSink.java

19420
来自专栏码匠的流水账

聊聊storm的AssignmentDistributionService

本文主要研究一下storm的AssignmentDistributionService

15610
来自专栏Hellovass 的博客

魔改 TypeAdapterFactory

感慨:Retrofit2 虽好,但是,有时候总感觉 Java 这门语言还是美中不足啊!

20810
来自专栏服务端技术杂谈

ThreadLocal源码阅读

ThreadLocal平时用的比较多,通过将变量在每个线程放一个副本,避免了在多线程下对于变量的争抢。 ThreadLocal源码比较简单,整体了解起来比较容易...

32540

扫码关注云+社区

领取腾讯云代金券