专栏首页linux驱动个人学习Linux下2号进程的kthreadd--Linux进程的管理与调度(七)

Linux下2号进程的kthreadd--Linux进程的管理与调度(七)

2号进程

内核初始化rest_init函数中,由进程 0 (swapper 进程)创建了两个process

  • init 进程 (pid = 1, ppid = 0)
  • kthreadd (pid = 2, ppid = 0)

所有其它的内核线程的ppid 都是 2,也就是说它们都是由kthreadd thread创建的

所有的内核线程在大部分时间里都处于阻塞状态(TASK_INTERRUPTIBLE)只有在系统满足进程需要的某种资源的情况下才会运行

它的任务就是管理和调度其他内核线程kernel_thread, 会循环执行一个kthreadd的函数,该函数的作用就是运行kthread_create_list全局链表中维护的kthread, 当我们调用kernel_thread创建的内核线程会被加入到此链表中,因此所有的内核线程都是直接或者间接的以kthreadd为父进程

2号进程的创建

在rest_init函数中创建2号进程的代码如下

pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);
rcu_read_lock();
kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
rcu_read_unlock();
complete(&kthreadd_done);

2号进程的事件循环

int kthreadd(void *unused)
{
    struct task_struct *tsk = current;

    /* Setup a clean context for our children to inherit. */
    set_task_comm(tsk, "kthreadd");
    ignore_signals(tsk);
    set_cpus_allowed_ptr(tsk, cpu_all_mask);            //  允许kthreadd在任意CPU上运行
    set_mems_allowed(node_states[N_MEMORY]);

    current->flags |= PF_NOFREEZE;

    for (;;) {
            /*  首先将线程状态设置为 TASK_INTERRUPTIBLE, 如果当前
            没有要创建的线程则主动放弃 CPU 完成调度.此进程变为阻塞态*/
            set_current_state(TASK_INTERRUPTIBLE);
            if (list_empty(&kthread_create_list))  //  没有需要创建的内核线程
                    schedule();                                 //   什么也不做, 执行一次调度, 让出CPU

             /*  运行到此表示 kthreadd 线程被唤醒(就是我们当前)
            设置进程运行状态为 TASK_RUNNING */
            __set_current_state(TASK_RUNNING);

            spin_lock(&kthread_create_lock);                    //  加锁,
            while (!list_empty(&kthread_create_list)) {
                    struct kthread_create_info *create;

                    /*  从链表中取得 kthread_create_info 结构的地址,在上文中已经完成插入操作(将
                    kthread_create_info 结构中的 list 成员加到链表中,此时根据成员 list 的偏移
                    获得 create)  */
                    create = list_entry(kthread_create_list.next,
                                        struct kthread_create_info, list);

                    /* 完成穿件后将其从链表中删除 */
                    list_del_init(&create->list);

                    /* 完成真正线程的创建 */
                    spin_unlock(&kthread_create_lock);  

                    create_kthread(create);

                    spin_lock(&kthread_create_lock);
            }
            spin_unlock(&kthread_create_lock);
    }

    return 0;
}

kthreadd的核心是一for和while循环体。

在for循环中,如果发现kthread_create_list是一空链表,则调用schedule调度函数,因为此前已经将该进程的状态设置为TASK_INTERRUPTIBLE,所以schedule的调用将会使当前进程进入睡眠。

如果kthread_create_list不为空,则进入while循环,在该循环体中会遍历该kthread_create_list列表,对于该列表上的每一个entry,都会得到对应的类型为struct kthread_create_info的节点的指针create.

然后函数在kthread_create_list中删除create对应的列表entry,接下来以create指针为参数调用create_kthread(create).

create_kthread的过程如下

create_kthread完成内核线程创建

static void create_kthread(struct kthread_create_info *create)
{
    int pid;

#ifdef CONFIG_NUMA
    current->pref_node_fork = create->node;
#endif
    /* We want our own signal handler (we take no signals by default). 
    其实就是调用首先构造一个假的上下文执行环境,最后调用 do_fork()
    返回进程 id, 创建后的线程执行 kthread 函数
    */
    pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
    if (pid < 0) {
            /* If user was SIGKILLed, I release the structure. */
            struct completion *done = xchg(&create->done, NULL);

            if (!done) {
                    kfree(create);
                    return;
            }
            create->result = ERR_PTR(pid);
            complete(done);
    }
}

在create_kthread()函数中,会调用kernel_thread来生成一个新的进程,该进程的内核函数为kthread,调用参数为

pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);

我们可以看到,创建的内核线程执行的事件kthread

此时回到 kthreadd thread,它在完成了进程的创建后继续循环,检查 kthread_create_list 链表,如果为空,则 kthreadd 内核线程昏睡过去

那么我们现在回想我们的操作 我们在内核中通过kernel_create或者其他方式创建一个内核线程, 然后kthreadd内核线程被唤醒, 来执行内核线程创建的真正工作,于是这里有三个线程

  1. kthreadd已经光荣完成使命(接手执行真正的创建工作),睡眠
  2. 唤醒kthreadd的线程由于新创建的线程还没有创建完毕而继续睡眠 (在 kthread_create函数中)
  3. 新创建的线程已经正在运行kthread,但是由于还有其它工作没有做所以还没有最终创建完成.

新创建的内核线程kthread函数

static int kthread(void *_create)
{
    /* Copy data: it's on kthread's stack 
     create 指向 kthread_create_info 中的 kthread_create_info */
    struct kthread_create_info *create = _create;

     /*  新的线程创建完毕后执行的函数 */
    int (*threadfn)(void *data) = create->threadfn;
    /*  新的线程执行的参数  */
    void *data = create->data;
    struct completion *done;
    struct kthread self;
    int ret;

    self.flags = 0;
    self.data = data;
    init_completion(&self.exited);
    init_completion(&self.parked);
    current->vfork_done = &self.exited;

    /* If user was SIGKILLed, I release the structure. */
    done = xchg(&create->done, NULL);
    if (!done) {
            kfree(create);
            do_exit(-EINTR);
    }
    /* OK, tell user we're spawned, wait for stop or wakeup
     设置运行状态为 TASK_UNINTERRUPTIBLE  */
    __set_current_state(TASK_UNINTERRUPTIBLE);

     /*  current 表示当前新创建的 thread 的 task_struct 结构  */
    create->result = current;
    complete(done);
    /*  至此线程创建完毕 ,  执行任务切换,让出 CPU  */
    schedule();

    ret = -EINTR;

    if (!test_bit(KTHREAD_SHOULD_STOP, &self.flags)) {
            __kthread_parkme(&self);
            ret = threadfn(data);
    }
    /* we can't just return, we must preserve "self" on stack */
    do_exit(ret);
}

线程创建完毕:

创建新 thread 的进程恢复运行 kthread_create() 并且返回新创建线程的任务描述符 新创建的线程由于执行了 schedule() 调度,此时并没有执行.

直到我们使用wake_up_process(p);唤醒新创建的线程

线程被唤醒后, 会接着执行threadfn(data)

ret = -EINTR;

    if (!test_bit(KTHREAD_SHOULD_STOP, &self.flags)) {
            __kthread_parkme(&self);
            ret = threadfn(data);
    }
    /* we can't just return, we must preserve "self" on stack */
    do_exit(ret)

总结

kthreadd进程由idle通过kernel_thread创建,并始终运行在内核空间, 负责所有内核线程的调度和管理,它的任务就是管理和调度其他内核线程kernel_thread, 会循环执行一个kthreadd的函数,该函数的作用就是运行kthread_create_list全局链表中维护的kthread, 当我们调用kernel_thread创建的内核线程会被加入到此链表中,因此所有的内核线程都是直接或者间接的以kthreadd为父进程

我们在内核中通过kernel_create或者其他方式创建一个内核线程, 然后kthreadd内核线程被唤醒, 来执行内核线程创建的真正工作,新的线程将执行kthread函数, 完成创建工作,创建完毕后让出CPU,因此新的内核线程不会立刻运行.需要手工 wake up, 被唤醒后将执行自己的真正工作函数

  • 任何一个内核线程入口都是 kthread()
  • 通过 kthread_create() 创建的内核线程不会立刻运行.需要手工 wake up.
  • 通过 kthread_create() 创建的内核线程有可能不会执行相应线程函数threadfn而直接退出

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • Android Recovery升级原理

    Recovery模式指的是一种可以对安卓机内部的数据或系统进行修改的模式(类似于windows PE或DOS)。也可以称之为安卓的恢复模式,在这个所谓的恢复模式...

    233333
  • I2S协议

    (一)I2S总线概述: 音响数据的采集、处理和传输是多媒体技术的重要组成部分。众多的数字音频系统已经进入消费市场,例如数字音频录音带、数字声音处理器。对于设备和...

    233333
  • 一个通用的makefile(一)

    最近在编写Android编译系统时,需要遍历每一个目录下每一个文件夹下的makefile,网上的方法有些繁琐 ;就直接贴上自己遍历子目录深度为1;(for  t...

    233333
  • Python实战之tkinter库画图,用canver画布教你画卡通人物!

    我们知道Python之所以强大,很大一方面都是因为它具有很多强大的第三方库。

    灰小猿
  • Elasticsearch集群搭建

    Elasticsearch单机版安装:https://www.cnblogs.com/biehongli/p/11643482.html

    别先生
  • [日常] Go语言圣经-并发的非阻塞缓存

    1.go test命令是一个按照约定和组织进行测试的程序 2.竞争检查器 go run -race 附带一个运行期对共享变量访问工具的test,出现WARNIN...

    陶士涵
  • 7.4 指向函数的指针

    ①定义指向函数的指针变量,并不意味着这个指针变量可以指向任何函数,它只能指向在定义时指定的类型的函数

    C语言入门到精通
  • 「r」dplyr 里的 join 与 base 里的 merge 存在差异

    今天在使用连接操作时发现:虽然都是合并操作函数,dplyr 包里的 *_join() 和基础包里面的 merge() 存在差异,不同的数据结构,结果也会存在偏差...

    王诗翔呀
  • windows环境下安装elasticsearch6.2.2

    1、Elasticsearch 6.2.2 下载 https://www.elastic.co/cn/downloads/past-releases/elast...

    小傅哥
  • JavaScript中的函数防抖与函数节流

    函数防抖(debounce)当调用动作过n毫秒后,才会执行该动作,若在这n毫秒内又调用此动作则将重新计算执行时间。

    刘亦枫

扫码关注云+社区

领取腾讯云代金券