谷歌和哈佛大学研究人员开发AI模型预测地震余震,比现有方法更准确

编译:chux

出品:ATYUN订阅号

谷歌AI部门和哈佛大学的研究人员已经创建了一个AI模型,能够预测大地震后一年内余震的位置。近几十年来,该模型接受了199次大地震事件以及随后发生的130000次余震的训练,比目前用于预测余震的方法更准确。

用于训练神经网络的数据集所包含的余震发生在一个周长50公里的周边区域,从每个地震震中横向延伸100公里。

“我们发现,在将这些模型应力变化馈入神经网络后,神经网络可以更准确地预测测试数据集中的余震位置,即在余震位置研究中大量使用的基线库仑失效应力变化标准,”哈佛大学地球与行星科学系的Phoebe DeVries表示。

用于训练模型的数据来自于引起注意的地震,如2004年苏门答腊地震,2011年日本地震,1989年旧金山湾区Loma Prieta地震以及1994年洛杉矶附近的Northride地震。

结果发表在今天的《Nature》杂志上。该研究由DeVries和谷歌机器学习研究人员Martin Wattenberg和FernandaViégas以及谷歌AI招聘主管Brendan Meade共同撰写。

虽然DeVries和Meade认为自己是计算地球科学家,但没有真正的地震学家参与这项研究。

训练AI模型的经验教训将用于探索一个更大的问题:什么引发地震?

Meade表示,“虽然大多数神经网络非常难以解释,有时也被称为黑盒子,但我认为因为我们对可能涉及的物理学有了一些了解,所以我们带来了通过弹性传递应力的知识。事实证明我们的结果是可以解释的。我们可以看一下这个网络的内容并真正理解它,它实际上指出了一些可能导致地震触发的物理理论,因此它引领我们走向一个令我们兴奋的新方向。”

Meade说,该模型无法将其他主要自然灾害(如火山爆发)产生的地震考虑在内。

“任何机器学习应用程序,无论神经网络是否具有推理能力,实际上不仅取决于架构而且取决于用于它的训练集,我们没有使用与火山或类似的任何训练集,所以我们没有理由相信它会对这样的事件起作用。”

Meade说,该模型是根据过去几年大地震的历史数据进行训练的,但未来的地震数据仍将向前发展。

论文:www.nature.com/articles/s41586-018-0438-y

原文发布于微信公众号 - ATYUN订阅号(atyun_com)

原文发表时间:2018-08-30

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏新智元

【干货】如何成为深度学习专家的七大步骤

首先为用Buzz做为点击标题的诱饵道歉,但是它确实是起到了一定的作用,并且吸引了大批读者来阅读此文章。 在我们的工作中,经常被问及的问题之一就是“从哪里开始学习...

3758
来自专栏hadoop学习笔记

Hanlp实战HMM-Viterbi角色标注中国人名识别

这几天写完了人名识别模块,与分词放到一起形成了两层隐马模型。虽然在算法或模型上没有什么新意,但是胜在训练语料比较新,对质量把关比较严,实测效果很满意。比如这句真...

1080
来自专栏ATYUN订阅号

斯坦福大学重大突破:直接在光学芯片上训练人工神经网络

斯坦福大学研究人员已经证明,可以直接在光学芯片上训练人工神经网络。这一重大突破表明光学电路可以执行基于电子的人工神经网络的关键功能,并且可以更便宜,更快速和更节...

903
来自专栏数据科学与人工智能

【陆勤践行】机器学习与文本分析

原文作者:微软研究院杰出科学家Ashok Chandra博士,项目经理Dhyanesh Narayanan 译者:张鑫 ? 上个世纪七十年代,当我(Ashok)...

2389
来自专栏大数据文摘

Neurons字幕组 | 2分钟带你看懂李飞飞论文:神经网络是怎样给一幅图增加文字描述,实现“看图说话”的?(附论文下载)

1942
来自专栏专知

【ACL 2018】8大Tutorial之神经语义解析 Neural Semantic Parsing(附下载)

【导读】近日,ACL 2018 在澳大利亚墨尔本举办,举办地点为墨尔本会展中心。其tutorial 旨在帮助领域新手了解计算机语言学与自然语言处理的最新进展以及...

2560
来自专栏ATYUN订阅号

斯坦福开发的AI可使地震监测系统接收极低强度地震的信号

2011年3月发生在日本海岸的9.0级这样的大地震不难被监测到,但很少有如此严重的事件。微地震,即低强度地震,在瞬时震级上达到2.0或更小的震级,很少造成财产损...

912
来自专栏机器之心

资源 | Style2paints:专业的AI漫画线稿自动上色工具

4534
来自专栏新智元

重大突破!斯坦福证明神经网络能直接在光学芯片上训练

【新智元导读】美国斯坦福大学的研究人员已经证明,可以直接在光学芯片上训练人工神经网络。这一重大突破表明,光学电路可以实现基于电子的人工神经网络的关键功能,进而可...

662
来自专栏AI科技评论

动态 | 谷歌大脑医疗影像研究新进展,通过视网膜影像预测心脑血管疾病风险

AI 科技评论按:Google Brain 团队近日发现一种使用机器学习来评估心脑血管疾病风险的新方法。这种方法通过分析病人的眼睛影像,能够精确地推断出包括病人...

3906

扫码关注云+社区

领取腾讯云代金券