前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Octave卷积学习笔记

Octave卷积学习笔记

作者头像
月见樽
发布2019-05-14 15:28:33
9690
发布2019-05-14 15:28:33
举报

本文首发于个人博客

Octave卷积

Octave卷积的主题思想来自于图片的分频思想,首先认为图像可进行分频:

  • 低频部分:图像低频部分保存图像的大体信息,信息数据量较少
  • 高频部分:图像高频部分保留图像的细节信息,信息数据量较大

由此,认为卷积神经网络中的feature map也可以进行分频,可按channel分为高频部分和低频部分,如图所示:

feature_map.png

对于一个feature map,将其按通道分为两个部分,分别为低频通道和高频通道。随后将低频通道的长宽各缩减一半,则将一个feature map分为了高频和低频两个部分,即为Octave卷积处理的基本feature map,使用X表示,该类型X可表示为

X = [X^H,X^L]
X = [X^H,X^L]

,其中

X^H
X^H

为高频部分,

X^L
X^L

为低频部分。

为了处理这种结构的feature map,其使用了如下所示的Octave卷积操作:

octave_conv.png

首先考虑低频部分输入

X^L
X^L

,该部分进行两个部分的操作:

X^L \to X^H
X^L \to X^H

:从低频到高频,首先使用指定卷积核

W^{L \to H}
W^{L \to H}

进行卷积,随后进行Upample操作生成与高频部分长宽相同的Tensor,最终产生

Y^{L\to H} = Upsample(Conv(X^L,W^{L \to H}),2)
Y^{L\to H} = Upsample(Conv(X^L,W^{L \to H}),2)
X^L \to X^L
X^L \to X^L

:从低频到低频,这个部分为直接进行卷积操作

Y^{L \to L} = Conv(X^L,W^{L \to L})
Y^{L \to L} = Conv(X^L,W^{L \to L})

随后考虑高频部分,与低频部分类似有两个部分的操作:

X^H \to X^H
X^H \to X^H

:从高频到高频,直接进行卷积操作

Y^{H \to H} = Conv(X^H,W^{H \to H})
Y^{H \to H} = Conv(X^H,W^{H \to H})
X^H \to X^L
X^H \to X^L

:从高频到低频,首先进行stride和kernel均为2的平均值池化,再进行卷积操作,生成与

Y^L
Y^L

通道数相同的feature map,最终产生

Y^{H \to L} = conv(avgpool(X^H,2),W^{H \to L}))
Y^{H \to L} = conv(avgpool(X^H,2),W^{H \to L}))

最终,有

Y^L = Y^{H \to L} + Y^{L \to L}
Y^L = Y^{H \to L} + Y^{L \to L}

Y^H = Y^{H \to H} +Y^{L \to H}
Y^H = Y^{H \to H} +Y^{L \to H}

,因此可以总结如下公式:

Y^L = Y^{H \to L} + Y^{L \to L} = Y^{H \to L} = conv(avgpool(X^H,2),W^{H \to L})) + Conv(X^L,W^{L \to L}) \\ Y^H = Y^{H \to H} +Y^{L \to H} = Conv(X^H,W^{H \to H}) + Upsample(Conv(X^L,W^{L \to H}),2)
Y^L = Y^{H \to L} + Y^{L \to L} = Y^{H \to L} = conv(avgpool(X^H,2),W^{H \to L})) + Conv(X^L,W^{L \to L}) \\ Y^H = Y^{H \to H} +Y^{L \to H} = Conv(X^H,W^{H \to H}) + Upsample(Conv(X^L,W^{L \to H}),2)

因此有四个部分的权值:

来源/去向

H

L

另外进行使用时,在网络的输入和输出需要将两个频率上的Tensor聚合,做法如下:

  • 输入部分,取
X = [X,0]
X = [X,0]

,即有

X^H = X
X^H = X

X^L = 0
X^L = 0

,仅进行

H \to L
H \to L

H \to H
H \to H

操作,输出输出的低频仅有X生成,即

Y^H = Y^{H \to H}
Y^H = Y^{H \to H}

Y^L = Y^{H \to L}
Y^L = Y^{H \to L}
  • 输出部分,取
X = [X^H,X^L]
X = [X^H,X^L]

\alpha = 0
\alpha = 0

。即仅进行

L \to H
L \to H

H \to H
H \to H

的操作,最终输出为

Y = Y^{L \to H} + Y^{H \to H}
Y = Y^{L \to H} + Y^{H \to H}

性能分析

以下计算均取原Tensor尺寸为

CI \times W \times H
CI \times W \times H

,卷积尺寸为

CO \times CI \times K \times K
CO \times CI \times K \times K

,输出Tensor尺寸为

CO \times W \times H
CO \times W \times H

(stride=1,padding设置使feature map尺寸不变)。

计算量分析

Octave卷积的最大优势在于减小计算量,取参数

\alpha
\alpha

为低频通道占总通道的比例。首先考虑直接卷积的计算量,对于输出feature map中的每个数据,需要进行

CI \times K \times K
CI \times K \times K

次乘加计算,因此总的计算量为:

C_{conv} = (CO \times W \times H) \times (CI \times K \times K)
C_{conv} = (CO \times W \times H) \times (CI \times K \times K)

现考虑Octave卷积,有四个卷积操作:

L \to L
L \to L

卷积:

C_{L \to L} = \alpha^2 \times (CO \times \frac{W}{2} \times \frac{H}{2}) \times (CI \times K \times K) = \frac{\alpha^2}{4} \times C_{conv}
C_{L \to L} = \alpha^2 \times (CO \times \frac{W}{2} \times \frac{H}{2}) \times (CI \times K \times K) = \frac{\alpha^2}{4} \times C_{conv}
L \to H
L \to H

卷积:

C_{L \to H} = ((1 - \alpha) \times CO \times \frac{W}{2} \times \frac{H}{2}) \times ( \alpha \times CI \times K \times K) = \frac{\alpha(1-\alpha)}{4} \times C_{conv}
C_{L \to H} = ((1 - \alpha) \times CO \times \frac{W}{2} \times \frac{H}{2}) \times ( \alpha \times CI \times K \times K) = \frac{\alpha(1-\alpha)}{4} \times C_{conv}
H \to L
H \to L

卷积:

C_{H \to L} = (\alpha \times CO \times \frac{W}{2} \times \frac{H}{2}) \times ((1 - \alpha) \times CI \times K \times K) = \frac{\alpha(1-\alpha)}{4} \times C_{conv}
C_{H \to L} = (\alpha \times CO \times \frac{W}{2} \times \frac{H}{2}) \times ((1 - \alpha) \times CI \times K \times K) = \frac{\alpha(1-\alpha)}{4} \times C_{conv}
H \to H
H \to H

卷积:

C_{H \to H} = ((1 - \alpha) \times CO \times W \times H) \times ((1 - \alpha) \times CI \times K \times K) = (1 - \alpha)^2 \times C_{conv}
C_{H \to H} = ((1 - \alpha) \times CO \times W \times H) \times ((1 - \alpha) \times CI \times K \times K) = (1 - \alpha)^2 \times C_{conv}

总上,可以得出计算量有:

\frac{C_{octave}}{C_{conv}} = \frac{\alpha^2 + 2\alpha(1-\alpha) + 4 (1 - \alpha)^2}{4} = 1 - \frac{3}{4}\alpha(2- \alpha)
\frac{C_{octave}}{C_{conv}} = \frac{\alpha^2 + 2\alpha(1-\alpha) + 4 (1 - \alpha)^2}{4} = 1 - \frac{3}{4}\alpha(2- \alpha)

\alpha \in [0,1]
\alpha \in [0,1]

中单调递减,当取

\alpha = 1
\alpha = 1

时,有

\frac{C_{octave}}{C_{conv}} = \frac{1}{4}
\frac{C_{octave}}{C_{conv}} = \frac{1}{4}

参数量分析

原卷积的参数量为:

W_{conv} = CO \times CI \times K \times K
W_{conv} = CO \times CI \times K \times K

Octave卷积将该部分分为四个,对于每个卷积有:

L \to L
L \to L

卷积:

W_{L \to L} =(\alpha\times CO) \times (\alpha \times CI) \times K \times K = \alpha^2 \times W_{conv}
W_{L \to L} =(\alpha\times CO) \times (\alpha \times CI) \times K \times K = \alpha^2 \times W_{conv}
L \to H
L \to H

卷积:

W_{L \to H} =((1-\alpha) \times CO) \times (\alpha \times CI) \times K \times K = \alpha(1 - \alpha) \times W_{conv}
W_{L \to H} =((1-\alpha) \times CO) \times (\alpha \times CI) \times K \times K = \alpha(1 - \alpha) \times W_{conv}
H \to L
H \to L

卷积:

W_{H \to L} =(\alpha \times CO) \times ((1-\alpha) \times CI) \times K \times K = \alpha(1 - \alpha) \times W_{conv}
W_{H \to L} =(\alpha \times CO) \times ((1-\alpha) \times CI) \times K \times K = \alpha(1 - \alpha) \times W_{conv}
H \to H
H \to H

卷积:

W_{H \to L} =((1-\alpha) \times CO) \times ((1-\alpha) \times CI) \times K \times K = (1 - \alpha)^2 \times W_{conv}
W_{H \to L} =((1-\alpha) \times CO) \times ((1-\alpha) \times CI) \times K \times K = (1 - \alpha)^2 \times W_{conv}

因此共有参数量:

C_{octave} = (\alpha^2 + 2\alpha(1 - \alpha) + (1 - \alpha)^2) \times C_{conv} = C_{conv}
C_{octave} = (\alpha^2 + 2\alpha(1 - \alpha) + (1 - \alpha)^2) \times C_{conv} = C_{conv}

由此,参数量没有发生变化,该方法无法减少参数量。

Octave卷积实现

Octave卷积模块

以下实现了一个兼容普通卷积的Octave卷积模块,针对不同的高频低频feature map的通道数,分为以下几种情况:

  • Lout_channel != 0 and Lin_channel != 0:通用Octave卷积,需要四个卷积参数
  • Lout_channel == 0 and Lin_channel != 0:输出Octave卷积,输入有低频部分,输出无低频部分,仅需要两个卷积参数
  • Lout_channel != 0 and Lin_channel == 0:输入Octave卷积,输入无低频部分,输出有低频部分,仅需要两个卷积参数
  • Lout_channel == 0 and Lin_channel == 0:退化为普通卷积,输入输出均无低频部分,仅有一个卷积参数
代码语言:javascript
复制
class OctaveConv(pt.nn.Module):

    def __init__(self,Lin_channel,Hin_channel,Lout_channel,Hout_channel,
            kernel,stride,padding):
        super(OctaveConv, self).__init__()
        if Lout_channel != 0 and Lin_channel != 0:
            self.convL2L = pt.nn.Conv2d(Lin_channel,Lout_channel, kernel,stride,padding)
            self.convH2L = pt.nn.Conv2d(Hin_channel,Lout_channel, kernel,stride,padding)
            self.convL2H = pt.nn.Conv2d(Lin_channel,Hout_channel, kernel,stride,padding)
            self.convH2H = pt.nn.Conv2d(Hin_channel,Hout_channel, kernel,stride,padding)
        elif Lout_channel == 0 and Lin_channel != 0:
            self.convL2L = None
            self.convH2L = None
            self.convL2H = pt.nn.Conv2d(Lin_channel,Hout_channel, kernel,stride,padding)
            self.convH2H = pt.nn.Conv2d(Hin_channel,Hout_channel, kernel,stride,padding)
        elif Lout_channel != 0 and Lin_channel == 0:
            self.convL2L = None
            self.convH2L = pt.nn.Conv2d(Hin_channel,Lout_channel, kernel,stride,padding)
            self.convL2H = None
            self.convH2H = pt.nn.Conv2d(Hin_channel,Hout_channel, kernel,stride,padding)
        else:
            self.convL2L = None
            self.convH2L = None
            self.convL2H = None
            self.convH2H = pt.nn.Conv2d(Hin_channel,Hout_channel, kernel,stride,padding)
        self.upsample = pt.nn.Upsample(scale_factor=2)
        self.pool = pt.nn.AvgPool2d(2)

    def forward(self,Lx,Hx):
        if self.convL2L is not None:
            L2Ly = self.convL2L(Lx)
        else:
            L2Ly = 0
        if self.convL2H is not None:
            L2Hy = self.upsample(self.convL2H(Lx))
        else:
            L2Hy = 0
        if self.convH2L is not None:
            H2Ly = self.convH2L(self.pool(Hx))
        else:
            H2Ly = 0
        if self.convH2H is not None:
            H2Hy = self.convH2H(Hx)
        else:
            H2Hy = 0
        return L2Ly+H2Ly,L2Hy+H2Hy

在前项传播的过程中,根据是否有对应的卷积操作参数判断是否进行卷积,若不进行卷积,将输出置为0。前向传播时,输入为低频和高频两个feature map,输出为低频和高频两个feature map,输入情况和参数配置应与通道数的配置匹配。

其他部分

使用MNIST数据集,构建了一个三层卷积+两层全连接层的神经网络,使用Adam优化器训练,代价函数使用交叉熵函数,训练3轮,最后在测试集上进行测试。

代码语言:javascript
复制
import torch as pt
import torchvision as ptv
# download dataset
train_dataset = ptv.datasets.MNIST("./",train=True,download=True,transform=ptv.transforms.ToTensor())
test_dataset = ptv.datasets.MNIST("./",train=False,download=True,transform=ptv.transforms.ToTensor())
train_loader = pt.utils.data.DataLoader(train_dataset,batch_size=64,shuffle=True)
test_loader = pt.utils.data.DataLoader(test_dataset,batch_size=64,shuffle=True)

# build network
class mnist_model(pt.nn.Module):

    def __init__(self):
        super(mnist_model, self).__init__()
        self.conv1 = OctaveConv(0,1,8,8,kernel=3,stride=1,padding=1)        
        self.conv2 = OctaveConv(8,8,16,16,kernel=3,stride=1,padding=1)      
        self.conv3 = OctaveConv(16,16,0,64,kernel=3,stride=1,padding=1)
        self.pool =  pt.nn.MaxPool2d(2)
        self.relu = pt.nn.ReLU()
        self.fc1 = pt.nn.Linear(64*7*7,256)
        self.fc2 = pt.nn.Linear(256,10)

    def forward(self,x):
        out = [self.pool(self.relu(i)) for i in self.conv1(0,x)]
        out = self.conv2(*out)
        _,out = self.conv3(*out)
        out = self.fc1(self.pool(self.relu(out)).view(-1,64*7*7))
        return self.fc2(out)


net = mnist_model().cuda()
# print(net)
# prepare training
def acc(outputs,label):
    _,data = pt.max(outputs,dim=1)
    return pt.mean((data.float()==label.float()).float()).item()

lossfunc = pt.nn.CrossEntropyLoss().cuda()
optimizer = pt.optim.Adam(net.parameters())

# train
for _ in range(3):
    for i,(data,label) in enumerate(train_loader) :
        optimizer.zero_grad()
        # print(i,data,label)
        data,label = data.cuda(),label.cuda()
        outputs = net(data)
        loss = lossfunc(outputs,label)
        loss.backward()

        optimizer.step()
        if i % 100 == 0:
            print(i,loss.cpu().data.item(),acc(outputs,label))

# test
acc_list = []
for i,(data,label) in enumerate(test_loader):
    data,label = data.cuda(),label.cuda()
    outputs = net(data)
    acc_list.append(acc(outputs,label))
print("Test:",sum(acc_list)/len(acc_list))

# save
pt.save(net,"./model.pth")

最终获得模型的准确率为0.988

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2019.05.05 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Octave卷积
  • 性能分析
    • 计算量分析
      • 参数量分析
      • Octave卷积实现
        • Octave卷积模块
          • 其他部分
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档