前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >linux内核数据结构之kfifo

linux内核数据结构之kfifo

作者头像
233333
发布2019-05-25 18:24:14
2.7K0
发布2019-05-25 18:24:14
举报

1、前言

最近项目中用到一个环形缓冲区(ring buffer),代码是由linux内核的kfifo改过来的。缓冲区在文件系统中经常用到,通过缓冲区缓解cpu读写内存和读写磁盘的速度。例如一个进程A产生数据发给另外一个进程B,进程B需要对进程A传的数据进行处理并写入文件,如果B没有处理完,则A要延迟发送。为了保证进程A减少等待时间,可以在A和B之间采用一个缓冲区,A每次将数据存放在缓冲区中,B每次冲缓冲区中取。这是典型的生产者和消费者模型,缓冲区中数据满足FIFO特性,因此可以采用队列进行实现。Linux内核的kfifo正好是一个环形队列,可以用来当作环形缓冲区。生产者与消费者使用缓冲区如下图所示:

image
image

2、linux 内核kfifo

kfifo设计的非常巧妙,代码很精简,对于入队和出对处理的出人意料。首先看一下kfifo的数据结构:

代码语言:javascript
复制
struct kfifo {
    unsigned char *buffer;     /* the buffer holding the data */
    unsigned int size;         /* the size of the allocated buffer */
    unsigned int in;           /* data is added at offset (in % size) */
    unsigned int out;          /* data is extracted from off. (out % size) */
    spinlock_t *lock;          /* protects concurrent modifications */
};

kfifo提供的方法有:

代码语言:javascript
复制
//根据给定buffer创建一个kfifo
struct kfifo *kfifo_init(unsigned char *buffer, unsigned int size,
                gfp_t gfp_mask, spinlock_t *lock);
//给定size分配buffer和kfifo
struct kfifo *kfifo_alloc(unsigned int size, gfp_t gfp_mask,
                 spinlock_t *lock);
//释放kfifo空间
void kfifo_free(struct kfifo *fifo)
//向kfifo中添加数据
unsigned int kfifo_put(struct kfifo *fifo,
                const unsigned char *buffer, unsigned int len)
//从kfifo中取数据
unsigned int kfifo_put(struct kfifo *fifo,
                const unsigned char *buffer, unsigned int len)
//获取kfifo中有数据的buffer大小
unsigned int kfifo_len(struct kfifo *fifo)

定义自旋锁的目的为了防止多进程/线程并发使用kfifo。因为in和out在每次get和out时,发生改变。初始化和创建kfifo的源代码如下:

代码语言:javascript
复制
struct kfifo *kfifo_init(unsigned char *buffer, unsigned int size,
             gfp_t gfp_mask, spinlock_t *lock)
{
    struct kfifo *fifo;
    /* size must be a power of 2 */
    BUG_ON(!is_power_of_2(size));
    fifo = kmalloc(sizeof(struct kfifo), gfp_mask);
    if (!fifo)
        return ERR_PTR(-ENOMEM);
    fifo->buffer = buffer;
    fifo->size = size;
    fifo->in = fifo->out = 0;
    fifo->lock = lock;

    return fifo;
}
struct kfifo *kfifo_alloc(unsigned int size, gfp_t gfp_mask, spinlock_t *lock)
{
    unsigned char *buffer;
    struct kfifo *ret;
    if (!is_power_of_2(size)) {
        BUG_ON(size > 0x80000000);
        size = roundup_pow_of_two(size);
    }
    buffer = kmalloc(size, gfp_mask);
    if (!buffer)
        return ERR_PTR(-ENOMEM);
    ret = kfifo_init(buffer, size, gfp_mask, lock);

    if (IS_ERR(ret))
        kfree(buffer);
    return ret;
}

在kfifo_init和kfifo_calloc中,kfifo->size的值总是在调用者传进来的size参数的基础上向2的幂扩展,这是内核一贯的做法。这样的好处不言而喻--对kfifo->size取模运算可以转化为与运算,如:kfifo->in % kfifo->size 可以转化为 kfifo->in & (kfifo->size – 1)

kfifo的巧妙之处在于in和out定义为无符号类型,在put和get时,in和out都是增加,当达到最大值时,产生溢出,使得从0开始,进行循环使用。put和get代码如下所示:

代码语言:javascript
复制
static inline unsigned int kfifo_put(struct kfifo *fifo,
                const unsigned char *buffer, unsigned int len)
{
    unsigned long flags;
    unsigned int ret;
    spin_lock_irqsave(fifo->lock, flags);
    ret = __kfifo_put(fifo, buffer, len);
    spin_unlock_irqrestore(fifo->lock, flags);
    return ret;
}

static inline unsigned int kfifo_get(struct kfifo *fifo,
                     unsigned char *buffer, unsigned int len)
{
    unsigned long flags;
    unsigned int ret;
    spin_lock_irqsave(fifo->lock, flags);
    ret = __kfifo_get(fifo, buffer, len);
        //当fifo->in == fifo->out时,buufer为空
    if (fifo->in == fifo->out)
        fifo->in = fifo->out = 0;
    spin_unlock_irqrestore(fifo->lock, flags);
    return ret;
}


unsigned int __kfifo_put(struct kfifo *fifo,
            const unsigned char *buffer, unsigned int len)
{
    unsigned int l;
       //buffer中空的长度
    len = min(len, fifo->size - fifo->in + fifo->out);
    /*
     * Ensure that we sample the fifo->out index -before- we
     * start putting bytes into the kfifo.
     */
    smp_mb();
    /* first put the data starting from fifo->in to buffer end */
    l = min(len, fifo->size - (fifo->in & (fifo->size - 1)));
    memcpy(fifo->buffer + (fifo->in & (fifo->size - 1)), buffer, l);
    /* then put the rest (if any) at the beginning of the buffer */
    memcpy(fifo->buffer, buffer + l, len - l);

    /*
     * Ensure that we add the bytes to the kfifo -before-
     * we update the fifo->in index.
     */
    smp_wmb();
    fifo->in += len;  //每次累加,到达最大值后溢出,自动转为0
    return len;
}

unsigned int __kfifo_get(struct kfifo *fifo,
             unsigned char *buffer, unsigned int len)
{
    unsigned int l;
        //有数据的缓冲区的长度
    len = min(len, fifo->in - fifo->out);
    /*
     * Ensure that we sample the fifo->in index -before- we
     * start removing bytes from the kfifo.
     */
    smp_rmb();
    /* first get the data from fifo->out until the end of the buffer */
    l = min(len, fifo->size - (fifo->out & (fifo->size - 1)));
    memcpy(buffer, fifo->buffer + (fifo->out & (fifo->size - 1)), l);
    /* then get the rest (if any) from the beginning of the buffer */
    memcpy(buffer + l, fifo->buffer, len - l);
    /*
     * Ensure that we remove the bytes from the kfifo -before-
     * we update the fifo->out index.
     */
    smp_mb();
    fifo->out += len; //每次累加,到达最大值后溢出,自动转为0
    return len;
}

put和get在调用__put和__get过程都进行加锁,防止并发。从代码中可以看出put和get都调用两次memcpy,这针对的是边界条件。例如下图:蓝色表示空闲,红色表示占用。

(1)空的kfifo,

image
image

(2)put一个buffer后

image
image

(3)get一个buffer后

image
image

(4)当此时put的buffer长度超出in到末尾长度时,则将剩下的移到头部去

image
image

3、测试程序

仿照kfifo编写一个ring_buffer,现有线程互斥量进行并发控制。设计的ring_buffer如下所示:

代码语言:javascript
复制
/**@brief 仿照linux kfifo写的ring buffer
 *@atuher Anker  date:2013-12-18
* ring_buffer.h
 * */

#ifndef KFIFO_HEADER_H 
#define KFIFO_HEADER_H

#include <inttypes.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <assert.h>

//判断x是否是2的次方
#define is_power_of_2(x) ((x) != 0 && (((x) & ((x) - 1)) == 0))
//取a和b中最小值
#define min(a, b) (((a) < (b)) ? (a) : (b))

struct ring_buffer
{
    void         *buffer;     //缓冲区
    uint32_t     size;       //大小
    uint32_t     in;         //入口位置
    uint32_t       out;        //出口位置
    pthread_mutex_t *f_lock;    //互斥锁
};
//初始化缓冲区
struct ring_buffer* ring_buffer_init(void *buffer, uint32_t size, pthread_mutex_t *f_lock)
{
    assert(buffer);
    struct ring_buffer *ring_buf = NULL;
    if (!is_power_of_2(size))
    {
    fprintf(stderr,"size must be power of 2.\n");
        return ring_buf;
    }
    ring_buf = (struct ring_buffer *)malloc(sizeof(struct ring_buffer));
    if (!ring_buf)
    {
        fprintf(stderr,"Failed to malloc memory,errno:%u,reason:%s",
            errno, strerror(errno));
        return ring_buf;
    }
    memset(ring_buf, 0, sizeof(struct ring_buffer));
    ring_buf->buffer = buffer;
    ring_buf->size = size;
    ring_buf->in = 0;
    ring_buf->out = 0;
        ring_buf->f_lock = f_lock;
    return ring_buf;
}
//释放缓冲区
void ring_buffer_free(struct ring_buffer *ring_buf)
{
    if (ring_buf)
    {
    if (ring_buf->buffer)
    {
        free(ring_buf->buffer);
        ring_buf->buffer = NULL;
    }
    free(ring_buf);
    ring_buf = NULL;
    }
}

//缓冲区的长度
uint32_t __ring_buffer_len(const struct ring_buffer *ring_buf)
{
    return (ring_buf->in - ring_buf->out);
}

//从缓冲区中取数据
uint32_t __ring_buffer_get(struct ring_buffer *ring_buf, void * buffer, uint32_t size)
{
    assert(ring_buf || buffer);
    uint32_t len = 0;
    size  = min(size, ring_buf->in - ring_buf->out);        
    /* first get the data from fifo->out until the end of the buffer */
    len = min(size, ring_buf->size - (ring_buf->out & (ring_buf->size - 1)));
    memcpy(buffer, ring_buf->buffer + (ring_buf->out & (ring_buf->size - 1)), len);
    /* then get the rest (if any) from the beginning of the buffer */
    memcpy(buffer + len, ring_buf->buffer, size - len);
    ring_buf->out += size;
    return size;
}
//向缓冲区中存放数据
uint32_t __ring_buffer_put(struct ring_buffer *ring_buf, void *buffer, uint32_t size)
{
    assert(ring_buf || buffer);
    uint32_t len = 0;
    size = min(size, ring_buf->size - ring_buf->in + ring_buf->out);
    /* first put the data starting from fifo->in to buffer end */
    len  = min(size, ring_buf->size - (ring_buf->in & (ring_buf->size - 1)));
    memcpy(ring_buf->buffer + (ring_buf->in & (ring_buf->size - 1)), buffer, len);
    /* then put the rest (if any) at the beginning of the buffer */
    memcpy(ring_buf->buffer, buffer + len, size - len);
    ring_buf->in += size;
    return size;
}

uint32_t ring_buffer_len(const struct ring_buffer *ring_buf)
{
    uint32_t len = 0;
    pthread_mutex_lock(ring_buf->f_lock);
    len = __ring_buffer_len(ring_buf);
    pthread_mutex_unlock(ring_buf->f_lock);
    return len;
}

uint32_t ring_buffer_get(struct ring_buffer *ring_buf, void *buffer, uint32_t size)
{
    uint32_t ret;
    pthread_mutex_lock(ring_buf->f_lock);
    ret = __ring_buffer_get(ring_buf, buffer, size);
    //buffer中没有数据
    if (ring_buf->in == ring_buf->out)
    ring_buf->in = ring_buf->out = 0;
    pthread_mutex_unlock(ring_buf->f_lock);
    return ret;
}

uint32_t ring_buffer_put(struct ring_buffer *ring_buf, void *buffer, uint32_t size)
{
    uint32_t ret;
    pthread_mutex_lock(ring_buf->f_lock);
    ret = __ring_buffer_put(ring_buf, buffer, size);
    pthread_mutex_unlock(ring_buf->f_lock);
    return ret;
}
#endif

采用多线程模拟生产者和消费者编写测试程序,如下所示:

代码语言:javascript
复制
/**@brief ring buffer测试程序,创建两个线程,一个生产者,一个消费者。
 * 生产者每隔1秒向buffer中投入数据,消费者每隔2秒去取数据。
 *@atuher Anker  date:2013-12-18
 * */
#include "ring_buffer.h"
#include <pthread.h>
#include <time.h>

#define BUFFER_SIZE  1024 * 1024

typedef struct student_info
{
    uint64_t stu_id;
    uint32_t age;
    uint32_t score;
}student_info;


void print_student_info(const student_info *stu_info)
{
    assert(stu_info);
    printf("id:%lu\t",stu_info->stu_id);
    printf("age:%u\t",stu_info->age);
    printf("score:%u\n",stu_info->score);
}

student_info * get_student_info(time_t timer)
{
    student_info *stu_info = (student_info *)malloc(sizeof(student_info));
    if (!stu_info)
    {
    fprintf(stderr, "Failed to malloc memory.\n");
    return NULL;
    }
    srand(timer);
    stu_info->stu_id = 10000 + rand() % 9999;
    stu_info->age = rand() % 30;
    stu_info->score = rand() % 101;
    print_student_info(stu_info);
    return stu_info;
}

void * consumer_proc(void *arg)
{
    struct ring_buffer *ring_buf = (struct ring_buffer *)arg;
    student_info stu_info; 
    while(1)
    {
    sleep(2);
    printf("------------------------------------------\n");
    printf("get a student info from ring buffer.\n");
    ring_buffer_get(ring_buf, (void *)&stu_info, sizeof(student_info));
    printf("ring buffer length: %u\n", ring_buffer_len(ring_buf));
    print_student_info(&stu_info);
    printf("------------------------------------------\n");
    }
    return (void *)ring_buf;
}

void * producer_proc(void *arg)
{
    time_t cur_time;
    struct ring_buffer *ring_buf = (struct ring_buffer *)arg;
    while(1)
    {
    time(&cur_time);
    srand(cur_time);
    int seed = rand() % 11111;
    printf("******************************************\n");
    student_info *stu_info = get_student_info(cur_time + seed);
    printf("put a student info to ring buffer.\n");
    ring_buffer_put(ring_buf, (void *)stu_info, sizeof(student_info));
    printf("ring buffer length: %u\n", ring_buffer_len(ring_buf));
    printf("******************************************\n");
    sleep(1);
    }
    return (void *)ring_buf;
}

int consumer_thread(void *arg)
{
    int err;
    pthread_t tid;
    err = pthread_create(&tid, NULL, consumer_proc, arg);
    if (err != 0)
    {
    fprintf(stderr, "Failed to create consumer thread.errno:%u, reason:%s\n",
        errno, strerror(errno));
    return -1;
    }
    return tid;
}
int producer_thread(void *arg)
{
    int err;
    pthread_t tid;
    err = pthread_create(&tid, NULL, producer_proc, arg);
    if (err != 0)
    {
    fprintf(stderr, "Failed to create consumer thread.errno:%u, reason:%s\n",
        errno, strerror(errno));
    return -1;
    }
    return tid;
}


int main()
{
    void * buffer = NULL;
    uint32_t size = 0;
    struct ring_buffer *ring_buf = NULL;
    pthread_t consume_pid, produce_pid;

    pthread_mutex_t *f_lock = (pthread_mutex_t *)malloc(sizeof(pthread_mutex_t));
    if (pthread_mutex_init(f_lock, NULL) != 0)
    {
    fprintf(stderr, "Failed init mutex,errno:%u,reason:%s\n",
        errno, strerror(errno));
    return -1;
    }
    buffer = (void *)malloc(BUFFER_SIZE);
    if (!buffer)
    {
    fprintf(stderr, "Failed to malloc memory.\n");
    return -1;
    }
    size = BUFFER_SIZE;
    ring_buf = ring_buffer_init(buffer, size, f_lock);
    if (!ring_buf)
    {
    fprintf(stderr, "Failed to init ring buffer.\n");
    return -1;
    }
#if 0
    student_info *stu_info = get_student_info(638946124);
    ring_buffer_put(ring_buf, (void *)stu_info, sizeof(student_info));
    stu_info = get_student_info(976686464);
    ring_buffer_put(ring_buf, (void *)stu_info, sizeof(student_info));
    ring_buffer_get(ring_buf, (void *)stu_info, sizeof(student_info));
    print_student_info(stu_info);
#endif
    printf("multi thread test.......\n");
    produce_pid  = producer_thread((void*)ring_buf);
    consume_pid  = consumer_thread((void*)ring_buf);
    pthread_join(produce_pid, NULL);
    pthread_join(consume_pid, NULL);
    ring_buffer_free(ring_buf);
    free(f_lock);
    return 0;
}

测试结果如下所示:

image
image
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2019-03-14 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1、前言
  • 2、linux 内核kfifo
  • 3、测试程序
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档