前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >9 Python 基础: 手把手带你梳理对象、继承与多态知识点

9 Python 基础: 手把手带你梳理对象、继承与多态知识点

原创
作者头像
野原测试开发
修改2019-07-24 10:47:52
1K0
修改2019-07-24 10:47:52
举报
文章被收录于专栏:技术探究技术探究

本文首发于腾讯云+社区,也可关注微信公众号【离不开的网】支持一下。


访问限制

访问限制想实现的是这三个内容:

代码语言:txt
复制
1/希望能够不让外界直接获取得到属性值
代码语言:txt
复制
2/不希望挖外界可以直接更改这个值
代码语言:txt
复制
3/但是这个属性可以在内部进行流转,内部可以设置/可以获取

在Class内部,可以有属性和方法,而外部代码可以通过直接调用实例变量的方法来操作数据,这样,就隐藏了内部的复杂逻辑。

但是,从前面Student类的定义来看,外部代码还是可以自由地修改一个实例的name、score属性:

代码语言:txt
复制
class Student(object):
def __init__(self, name, score):
        self.name = name
        self.score = score
def print_score(self):
        print '%s: %s' % (self.name, self.score)
        
---------------------------
>>> bart = Student('Bart Simpson', 98)
>>> bart.score
98
>>> bart.score = 59
>>> bart.score
59

如果要让内部属性不被外部访问,可以把属性的名称前加上两个下划线__,在Python中,实例的变量名如果以__开头,就变成了一个私有变量(private),只有内部可以访问,外部不能访问,所以,我们把Student类改一改:

代码语言:txt
复制
class Student(object):
def __init__(self, name, score):
        self.__name = name
        self.__score = score
def print_score(self):
        print '%s: %s' % (self.__name, self.__score)

改完后,对于外部代码来说,没什么变动,但是已经无法从外部访问实例变量.__name实例变量.__score了:

代码语言:txt
复制
>>> bart = Student('Bart Simpson', 98)
>>> bart.__name
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute '__name'

这样就确保了外部代码不能随意修改对象内部的状态,这样通过访问限制的保护,代码更加健壮。

但是如果外部代码要获取name和score怎么办?可以给Student类增加get_name和get_score这样的方法:

代码语言:txt
复制
class Student(object):
    ...
def get_name(self):
        return self.__name
def get_score(self):
        return self.__score

如果又要允许外部代码修改score怎么办?可以给Student类增加set_score方法:

代码语言:txt
复制
class Student(object):
    ...
def set_score(self, score):
        self.__score = score

你也许会问,原先那种直接通过bart.score = 59也可以修改啊,为什么要定义一个方法大费周折?因为在方法中,可以对参数做检查,避免传入无效的参数:

代码语言:txt
复制
class Student(object):
    ...
def set_score(self, score):
        if 0 <= score <= 100:
            self.__score = score
        else:
            raise ValueError('bad score')

需要注意的是,在Python中,变量名类似__xxx__的,也就是以双下划线开头,并且以双下划线结尾的,是特殊变量,特殊变量是可以直接访问的,不是private变量,所以,不能用__name____score__这样的变量名。

有些时候,你会看到以一个下划线开头的实例变量名,比如_name,这样的实例变量外部是可以访问的,但是,按照约定俗成的规定,当你看到这样的变量时,意思就是,“虽然我可以被访问,但是,请把我视为私有变量,不要随意访问”。

双下划线开头的实例变量是不是一定不能从外部访问呢?其实也不是。不能直接访问__name是因为Python解释器对外把__name变量改成了_Student__name,所以,仍然可以通过_Student__name来访问__name变量:

代码语言:txt
复制
>>> bart._Student__name
'Bart Simpson'
image.png
image.png

但是强烈建议你不要这么干,因为不同版本的Python解释器可能会把__name改成不同的变量名。

总的来说就是,Python本身没有任何机制阻止你干坏事,一切全靠自觉。

获取对象信息

当我们拿到一个对象的引用时,如何知道这个对象是什么类型、有哪些方法呢?

使用type()

首先,我们来判断对象类型,使用type()函数:

基本类型都可以用type()判断:

image.png
image.png

如果一个变量指向函数或者类,也可以用type()判断:

代码语言:txt
复制
>>> type(abs)
<type 'builtin_function_or_method'>
>>> type(a)
<class '__main__.Animal'>
image.png
image.png

但是type()函数返回的是什么类型呢?它返回type类型。如果我们要在if语句中判断,就需要比较两个变量的type类型是否相同:

代码语言:txt
复制
>>> type(123)==type(456)
True
>>> type('abc')==type('123')
True
>>> type('abc')==type(123)
False

但是这种写法太麻烦,Python把每种type类型都定义好了常量,放在types模块里,使用之前,需要先导入:

代码语言:txt
复制
>>> import types
>>> type('abc')==types.StringType
True
>>> type(u'abc')==types.UnicodeType
True
>>> type([])==types.ListType
True
>>> type(str)==types.TypeType
True

最后注意到有一种类型就叫TypeType,所有类型本身的类型就是TypeType,比如:

代码语言:txt
复制
>>> type(int)==type(str)==types.TypeType
True
image.png
image.png
image.png
image.png

使用isinstance()

对于class的继承关系来说,使用type()就很不方便。我们要判断class的类型,可以使用isinstance()函数。

代码语言:txt
复制
我们回顾上次的例子,如果继承关系是:
object -> Animal -> Dog -> Husky

那么,isinstance()就可以告诉我们,一个对象是否是某种类型。先创建3种类型的对象:

代码语言:txt
复制
>>> a = Animal()
>>> d = Dog()
>>> h = Husky()

然后,判断:

代码语言:txt
复制
>>> isinstance(h, Husky)
True

没有问题,因为h变量指向的就是Husky对象。

再判断:

代码语言:txt
复制
>>> isinstance(h, Dog)
True

h虽然自身是Husky类型,但由于Husky是从Dog继承下来的,所以,h也还是Dog类型。换句话说,isinstance()判断的是一个对象是否是该类型本身,或者位于该类型的父继承链上。

因此,我们可以确信,h还是Animal类型:

代码语言:txt
复制
>>> isinstance(h, Animal)
True

同理,实际类型是Dog的d也是Animal类型:

代码语言:txt
复制
>>> isinstance(d, Dog) and isinstance(d, Animal)
True

但是,d不是Husky类型:

代码语言:txt
复制
>>> isinstance(d, Husky)
False

能用type()判断的基本类型也可以用isinstance()判断:

代码语言:txt
复制
>>> isinstance('a', str)
True
>>> isinstance(u'a', unicode)
True
>>> isinstance('a', unicode)
False

并且还可以判断一个变量是否是某些类型中的一种,比如下面的代码就可以判断是否是str或者unicode:

代码语言:txt
复制
>>> isinstance('a', (str, unicode))
True
>>> isinstance(u'a', (str, unicode))
True

由于str和unicode都是从basestring继承下来的,所以,还可以把上面的代码简化为:

代码语言:txt
复制
>>> isinstance(u'a', basestring)
True

使用dir()

如果要获得一个对象的所有属性和方法,可以使用dir()函数,它返回一个包含字符串的list,比如,获得一个str对象的所有属性和方法:

代码语言:txt
复制
>>> dir('ABC')
['__add__', '__class__', '__contains__', '__delattr__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__getslice__', '__gt__', '__hash__', '__init__', '__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '_formatter_field_name_split', '_formatter_parser', 'capitalize', 'center', 'count', 'decode', 'encode', 'endswith', 'expandtabs', 'find', 'format', 'index', 'isalnum', 'isalpha', 'isdigit', 'islower', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']

类似__xxx__的属性和方法在Python中都是有特殊用途的,比如__len__方法返回长度。在Python中,如果你调用len()函数试图获取一个对象的长度,实际上,在len()函数内部,它自动去调用该对象的__len__()方法,所以,下面的代码是等价的:

代码语言:txt
复制
>>> len('ABC')
3
>>> 'ABC'.__len__()
3

我们自己写的类,如果也想用len(myObj)的话,就自己写一个__len__()方法:

代码语言:txt
复制
>>> class MyObject(object):
...     def __len__(self):
...         return 100
...
>>> obj = MyObject()
>>> len(obj)
100

剩下的都是普通属性或方法,比如lower()返回小写的字符串:

代码语言:txt
复制
>>> 'ABC'.lower()
'abc'

仅仅把属性和方法列出来是不够的,配合getattr()、setattr()以及hasattr(),我们可以直接操作一个对象的状态:

代码语言:txt
复制
>>> class MyObject(object):
...     def __init__(self):
...         self.x = 9
...     def power(self):
...         return self.x * self.x
...
>>> obj = MyObject()

紧接着,可以测试该对象的属性:

代码语言:txt
复制
>>> hasattr(obj, 'x') # 有属性'x'吗?
True
>>> obj.x
9
>>> hasattr(obj, 'y') # 有属性'y'吗?
False
>>> setattr(obj, 'y', 19) # 设置一个属性'y'
>>> hasattr(obj, 'y') # 有属性'y'吗?
True
>>> getattr(obj, 'y') # 获取属性'y'
19
>>> obj.y # 获取属性'y'
19

如果试图获取不存在的属性,会抛出AttributeError的错误:

代码语言:txt
复制
>>> getattr(obj, 'z') # 获取属性'z'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'MyObject' object has no attribute 'z'

可以传入一个default参数,如果属性不存在,就返回默认值:

代码语言:txt
复制
>>> getattr(obj, 'z', 404) # 获取属性'z',如果不存在,返回默认值404
404

也可以获得对象的方法:

代码语言:txt
复制
>>> hasattr(obj, 'power') # 有属性'power'吗?
True
>>> getattr(obj, 'power') # 获取属性'power'
<bound method MyObject.power of <__main__.MyObject object at 0x108ca35d0>>
>>> fn = getattr(obj, 'power') # 获取属性'power'并赋值到变量fn
>>> fn # fn指向obj.power
<bound method MyObject.power of <__main__.MyObject object at 0x108ca35d0>>
>>> fn() # 调用fn()与调用obj.power()是一样的
81

小结

通过内置的一系列函数,我们可以对任意一个Python对象进行剖析,拿到其内部的数据。要注意的是,只有在不知道对象信息的时候,我们才会去获取对象信息。如果可以直接写:

代码语言:txt
复制
sum = obj.x + obj.y 
代码语言:txt
复制
sum = getattr(obj, 'x') + getattr(obj, 'y')

一个正确的用法的例子如下:

代码语言:txt
复制
def readImage(fp):
    if hasattr(fp, 'read'):
        return readData(fp)
    return None

假设我们希望从文件流fp中读取图像,我们首先要判断该fp对象是否存在read方法,如果存在,则该对象是一个流,如果不存在,则无法读取。hasattr()就派上了用场。

请注意,在Python这类动态语言中,有read()方法,不代表该fp对象就是一个文件流,它也可能是网络流,也可能是内存中的一个字节流,但只要read()方法返回的是有效的图像数据,就不影响读取图像的功能。

继承与多态

在OOP程序设计中,当我们定义一个class的时候,可以从某个现有的class继承,新的class称为子类(Subclass),而被继承的class称为基类、父类或超类(Base class、Super class)。

比如,我们已经编写了一个名为Animal的class,有一个run()方法可以直接打印:

代码语言:txt
复制
class Animal(object):
    def run(self):
        print('Animal is running...')

当我们需要编写Dog和Cat类时,就可以直接从Animal类继承:

代码语言:txt
复制
class Dog(Animal):
    pass
class Cat(Animal):
    pass

对于Dog来说,Animal就是它的父类,对于Animal来说,Dog就是它的子类。Cat和Dog类似。

继承有什么好处?最大的好处是子类获得了父类的全部功能。由于Animial实现了run()方法,因此,Dog和Cat作为它的子类,什么事也没干,就自动拥有了run()方法:

代码语言:txt
复制
dog = Dog()
dog.run()
cat = Cat()
cat.run()

-----------------

# 结果如下:
Animal is running...
Animal is running...

当然,也可以对子类增加一些方法,比如Dog类:

代码语言:txt
复制
class Dog(Animal):
    def run(self):
        print('Dog is running...')
    def eat(self):
        print('Eating meat...')

继承的第二个好处需要我们对代码做一点改进。你看到了,无论是Dog还是Cat,它们run()的时候,显示的都是Animal

is running...,符合逻辑的做法是分别显示Dog is running...和Cat is running...,因此,对Dog和Cat类改进如下:

代码语言:txt
复制
class Dog(Animal):
    def run(self):
        print('Dog is running...')
class Cat(Animal):
    def run(self):
        print('Cat is running...')

---------------------------------

# 再次运行,结果如下:
Dog is running...
Cat is running...

当子类和父类都存在相同的run()方法时,我们说,子类的run()覆盖了父类的run(),在代码运行的时候,总是会调用子类的run()。这样,我们就获得了继承的另一个好处:多态。

要理解什么是多态,我们首先要对数据类型再作一点说明。当我们定义一个class的时候,我们实际上就定义了一种数据类型。我们定义的数据类型和Python自带的数据类型,比如str、list、dict没什么两样:

代码语言:txt
复制
a = list() # a是list类型
b = Animal() # b是Animal类型
c = Dog() # c是Dog类型

判断一个变量是否是某个类型可以用isinstance()判断:

代码语言:txt
复制
>>> isinstance(a, list)
True
>>> isinstance(b, Animal)
True
>>> isinstance(c, Dog)
True

看来a、b、c确实对应着list、Animal、Dog这3种类型。

但是等等,试试:

代码语言:txt
复制
>>> isinstance(c, Animal)
True

看来c不仅仅是Dog,c还是Animal!

不过仔细想想,这是有道理的,因为Dog是从Animal继承下来的,当我们创建了一个Dog的实例c时,我们认为c的数据类型是Dog没错,但c同时也是Animal也没错,Dog本来就是Animal的一种!

所以,在继承关系中,如果一个实例的数据类型是某个子类,那它的数据类型也可以被看做是父类。但是,反过来就不行:

代码语言:txt
复制
>>> b = Animal()
>>> isinstance(b, Dog)
False

Dog可以看成Animal,但Animal不可以看成Dog。

代码语言:txt
复制
## 要理解多态的好处,我们还需要再编写一个函数,这个函数接受一个Animal类型的变量:

def run_twice(animal):
    animal.run()
    animal.run()

当我们传入Animal的实例时,run_twice()就打印出:

代码语言:txt
复制
>>> run_twice(Animal())
Animal is running...
Animal is running...

当我们传入Dog的实例时,run_twice()就打印出:

代码语言:txt
复制
>>> run_twice(Dog())
Dog is running...
Dog is running...

当我们传入Cat的实例时,run_twice()就打印出:

代码语言:txt
复制
>>> run_twice(Cat())
Cat is running...
Cat is running...

看上去没啥意思,但是仔细想想,现在,如果我们再定义一个Tortoise类型,也从Animal派生:

代码语言:txt
复制
class Tortoise(Animal):
    def run(self):
        print('Tortoise is running slowly...')

当我们调用run_twice()时,传入Tortoise的实例:

代码语言:txt
复制
>>> run_twice(Tortoise())
Tortoise is running slowly...
Tortoise is running slowly...

你会发现,新增一个Animal的子类,不必对run_twice()做任何修改,实际上,任何依赖Animal作为参数的函数或者方法都可以不加修改地正常运行,原因就在于多态。

多态,python是一门动态语言,没有所谓真正意义上的多态,多态是来自于静态语言

多态的好处就是,当我们需要传入Dog、Cat、Tortoise……时,我们只需要接收Animal类型就可以了,因为Dog、Cat、Tortoise……都是Animal类型,然后,按照Animal类型进行操作即可。由于Animal类型有run()方法,因此,传入的任意类型,只要是Animal类或者子类,就会自动调用实际类型的run()方法,这就是多态的意思:

对于一个变量,我们只需要知道它是Animal类型,无需确切地知道它的子类型,就可以放心地调用run()方法,而具体调用的run()方法是作用在Animal、Dog、Cat还是Tortoise对象上,由运行时该对象的确切类型决定,这就是多态真正的威力:调用方只管调用,不管细节,而当我们新增一种Animal的子类时,只要确保run()方法编写正确,不用管原来的代码是如何调用的。这就是著名的“开闭”原则:

对扩展开放:允许新增Animal子类;

对修改封闭:不需要修改依赖Animal类型的run_twice()等函数。

继承还可以一级一级地继承下来,就好比从爷爷到爸爸、再到儿子这样的关系。而任何类,最终都可以追溯到根类object,这些继承关系看上去就像一颗倒着的树。比如如下的继承树:

image.png
image.png

小结

继承可以把父类的所有功能都直接拿过来,这样就不必重零做起,子类只需要新增自己特有的方法,也可以把父类不适合的方法覆盖重写;

有了继承,才能有多态。在调用类实例方法的时候,尽量把变量视作父类类型,这样,所有子类类型都可以正常被接收;

旧的方式定义Python类允许不从object类继承,但这种编程方式已经严重不推荐使用。任何时候,如果没有合适的类可以继承,就继承自object类。

使用@property

使用@property

在绑定属性时,如果我们直接把属性暴露出去,虽然写起来很简单,但是,没办法检查参数,导致可以把成绩随便改:

代码语言:txt
复制
s = Student()
s.score = 9999

这显然不合逻辑。为了限制score的范围,可以通过一个set_score()方法来设置成绩,再通过一个get_score()来获取成绩,这样,在set_score()方法里,就可以检查参数:

代码语言:txt
复制
class Student(object):
def get_score(self):
 #判断跟之前的数据是不是发生改变。
        return self._score
def set_score(self, value):
        if not isinstance(value, int):
            raise ValueError('score must be an integer!')
        if value < 0 or value > 100:
            raise ValueError('score must between 0 ~ 100!')
#去触发数据的更新
        self._score = value

现在,对任意的Student实例进行操作,就不能随心所欲地设置score了:

代码语言:txt
复制
>>> s = Student()
>>> s.set_score(60) # ok!
>>> s.get_score()
60
>>> s.set_score(9999)
Traceback (most recent call last):
  ...
ValueError: score must between 0 ~ 100!

但是,上面的调用方法又略显复杂,没有直接用属性这么直接简单。

有没有既能检查参数,又可以用类似属性这样简单的方式来访问类的变量呢?对于追求完美的Python程序员来说,这是必须要做到的!

还记得装饰器(decorator)可以给函数动态加上功能吗?对于类的方法,装饰器一样起作用。Python内置的@property装饰器就是负责把一个方法变成属性调用的:

代码语言:txt
复制
class Student(object):
@property
    def score(self):
        return self._score
@score.setter
    def score(self, value):
        if not isinstance(value, int):
            raise ValueError('score must be an integer!')
        if value < 0 or value > 100:
            raise ValueError('score must between 0 ~ 100!')
        self._score = value

@property的实现比较复杂,我们先考察如何使用。把一个getter方法变成属性,只需要加上@property就可以了,此时,@property本身又创建了另一个装饰器@score.setter,负责把一个setter方法变成属性赋值,于是,我们就拥有一个可控的属性操作:

代码语言:txt
复制
>>> s = Student()
>>> s.score = 60 # OK,实际转化为s.set_score(60)
>>> s.score # OK,实际转化为s.get_score()
60
>>> s.score = 9999
Traceback (most recent call last):
  ...
ValueError: score must between 0 ~ 100!

注意到这个神奇的@property,我们在对实例属性操作的时候,就知道该属性很可能不是直接暴露的,而是通过getter和setter方法来实现的。

还可以定义只读属性,只定义getter方法,不定义setter方法就是一个只读属性:

代码语言:txt
复制
class Student(object):
@property
    def birth(self):
        return self._birth
@birth.setter
    def birth(self, value):
        self._birth = value
@property
    def age(self):
        return 2014 - self._birth

上面的birth是可读写属性,而age就是一个只读属性,因为age可以根据birth和当前时间计算出来。

小结

@property广泛应用在类的定义中,可以让调用者写出简短的代码,同时保证对参数进行必要的检查,这样,程序运行时就减少了出错的可能性。

使用__slots__

正常情况下,当我们定义了一个class,创建了一个class的实例后,我们可以给该实例绑定任何属性和方法,这就是动态语言的灵活性。先定义class:

代码语言:txt
复制
>>> class Student(object):
...     pass
...

然后,尝试给实例绑定一个属性:

代码语言:txt
复制
>>> s = Student()
>>> s.name = 'Michael' # 动态给实例绑定一个属性
>>> print(s.name)
Michael

还可以尝试给实例绑定一个方法:

代码语言:txt
复制
>>> def set_age(self, age): # 定义一个函数作为实例方法
...     self.age = age
...
#这个方法是专门用于绑定事例对象的方法。主要解决的就是事例对象上直接绑定函数,拿不到self的问题。
>>> from types import MethodType
>>> s.set_age = MethodType(set_age, s, Student) # 给实例绑定一个方法
>>> s.set_age(25) # 调用实例方法
>>> s.age # 测试结果
25

但是,给一个实例绑定的方法,对另一个实例是不起作用的:

代码语言:txt
复制
>>> s2 = Student() # 创建新的实例
>>> s2.set_age(25) # 尝试调用方法
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'set_age'

为了给所有实例都绑定方法,可以给class绑定方法:

代码语言:txt
复制
>>> def set_score(self, score):
...     self.score = score
...
>>> Student.set_score = MethodType(set_score, None, Student)

给class绑定方法后,所有实例均可调用:

代码语言:txt
复制
>>> s.set_score(100)
>>> s.score
100
>>> s2.set_score(99)
>>> s2.score
99

通常情况下,上面的set_score方法可以直接定义在class中,但动态绑定允许我们在程序运行的过程中动态给class加上功能,这在静态语言中很难实现。

使用__slots__

image.png
image.png
image.png
image.png

但是,如果我们想要限制class的属性怎么办?比如,只允许对Student实例添加name和age属性。

为了达到限制的目的,Python允许在定义class的时候,定义一个特殊的__slots__变量,来限制该class能添加的属性:

代码语言:txt
复制
>>> class Student(object):
...     __slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称
...

然后,我们试试:

代码语言:txt
复制
>>> s = Student() # 创建新的实例
>>> s.name = 'Michael' # 绑定属性'name'
>>> s.age = 25 # 绑定属性'age'
>>> s.score = 99 # 绑定属性'score'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'score'

由于'score'没有被放到__slots__中,所以不能绑定score属性,试图绑定score将得到AttributeError的错误。

使用__slots__要注意,__slots__定义的属性仅对当前类起作用,对继承的子类是不起作用的:

代码语言:txt
复制
>>> class GraduateStudent(Student):
...     pass
...
>>> g = GraduateStudent()
>>> g.score = 9999

除非在子类中也定义__slots__,这样,子类允许定义的属性就是自身的__slots__加上父类的__slots__


原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档