专栏首页RainMark 的文章TarJan 算法求解有向连通图强连通分量

TarJan 算法求解有向连通图强连通分量

[有向图强连通分量]

在有向图G中,如果两个 顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。

下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。

大体来说有3中算法Kosaraju,Trajan,Gabow这三种!后续文章中将相继介绍,首先介绍Tarjan算法

[Tarjan算法]

Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。

定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。

算法伪代码如下

tarjan(u)
{

    DFN[u]=Low[u]=++Index     // 为节点u设定次序编号和Low初值

    Stack.push(u)                     // 将节点u压入栈中

    for each (u, v) in E               // 枚举每一条边

          if (v is not visted)          // 如果节点v未被访问过

                  tarjan(v)              // 继续向下找

                  Low[u] = min(Low[u], Low[v])

            else if (v in S)            // 如果节点v还在栈内

            Low[u] = min(Low[u], DFN[v])

    if (DFN[u] == Low[u])        // 如果节点u是强连通分量的根

       repeat

           v = S.pop                  // 将v退栈,为该强连通分量中一个顶点

           print v

      until (u== v)

} 

接下来是对算法流程的演示。

从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。

返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。

返回节点3,继续搜索到节点4,把4加入堆栈。发现节点4向节点1有后向边,节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。

继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。

至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。

可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。

求 有向图的强连通分量还有一个强有力的算法,为Kosaraju算法。Kosaraju是基于对有向图及其逆图两次DFS的方法,其时间复杂度也是 O(N+M)。与Trajan算法相比,Kosaraju算法可能会稍微更直观一些。但是Tarjan只用对原图进行一次DFS,不用建立逆图,更简洁。 在实际的测试中,Tarjan算法的运行效率也比Kosaraju算法高30%左右。此外,该Tarjan算法与求无向图的双连通分量(割点、桥)的Tarjan算法也有着很深的联系。学习该Tarjan算法,也有助于深入理解求双连通分量的Tarjan算法,两者可以类比、组合理解。

求有向图的强连通分量的Tarjan算法是以其发明者Robert Tarjan命名的。Robert Tarjan还发明了求双连通分量的Tarjan算法,以及求最近公共祖先的离线Tarjan算法,在此对Tarjan表示崇高的敬意。

#include "cstdlib"
#include "cctype"
#include "cstring"
#include "cstdio"
#include "cmath"
#include "algorithm"
#include "vector"
#include "string"
#include "iostream"
#include "sstream"
#include "set"
#include "queue"
#include "stack"
#include "fstream"
#include "strstream"
using namespace std;

#define  M 2000              //题目中可能的最大点数      
int STACK[M],top=0;          //Tarjan 算法中的栈
bool InStack[M];             //检查是否在栈中
int DFN[M];                  //深度优先搜索访问次序
int Low[M];                  //能追溯到的最早的次序
int ComponetNumber=0;        //有向图强连通分量个数
int Index=0;                 //索引号
vector <int> Edge[M];        //邻接表表示
vector <int> Component[M];   //获得强连通分量结果

void Tarjan(int i)
{
    int j;
    DFN[i]=Low[i]=Index++;
    InStack[i]=true;
    STACK[++top]=i;
    for (int e=0;e<Edge[i].size();e++)
    {
        j=Edge[i][e];
        if (DFN[j]==-1)
        {
            Tarjan(j);
            Low[i]=min(Low[i],Low[j]);
        }
        else if (InStack[j])
            Low[i]=min(Low[i],DFN[j]);
    }
    if (DFN[i]==Low[i])
    {
        cout<<"TT    "<<i<<"   "<<Low[i]<<endl;
        ComponetNumber++;
        do
        {
            j=STACK[top--];
            InStack[j]=false;
            Component[ComponetNumber].push_back(j);
        }
        while (j!=i);
    }
}

void solve(int N)     //此图中点的个数,注意是0-indexed!
{
    memset(STACK,-1,sizeof(STACK));
    memset(InStack,0,sizeof(InStack));
    memset(DFN,-1,sizeof(DFN));
    memset(Low,-1,sizeof(Low));
    for(int i=0;i<N;i++)
        if(DFN[i]==-1)
            Tarjan(i);   
}
/*
此算法正常工作的基础是图是0-indexed的。
*/
int main()
{
    Edge[0].push_back(1);Edge[0].push_back(2);
    Edge[1].push_back(3);
    Edge[2].push_back(3);Edge[2].push_back(4);
    Edge[3].push_back(0);Edge[3].push_back(5);
    Edge[4].push_back(5);
    int  N=6;
    solve(N);
    cout<<"ComponetNumber is "<<ComponetNumber<<endl;
    for(int i=0;i<N;i++)
        cout<<Low[i]<<" ";
    cout<<endl;
    for(int i=0;i<N;i++)
    {
        for(int j=0;j<Component[i].size();j++)
            cout<<Component[i][j];
        cout<<endl;
    }
    return 0;
}

这个程序的运行过程和上图中表述的有些不同,他是先遍历到了1 2 4 6 3 5

Reference : 以上基本上是全文摘抄自

http://www.byvoid.com/blog/scc-tarjan/

http://www.notonlysuccess.com/?p=181

两篇总结都不错。。这里只是做一个回顾。。

转载来自:http://www.cppblog.com/sosi/archive/2010/09/26/127797.aspx

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 浅谈 Linux 内核无线子系统

    Linux 内核是如何实现无线网络接口呢?数据包是通过怎样的方式被发送和接收呢? 刚开始工作接触 Linux 无线网络时,我曾迷失在浩瀚的基础代码中,寻找具...

    RainMark
  • 安装 Linux 内核 4.0

    大家好,今天我们学习一下如何从Elrepo或者源代码来安装最新的Linux内核4.0。代号为‘Hurr durr I'm a sheep’的Linux内核4.0...

    RainMark
  • Arch Linux sudo: PAM authentication error: Module is unknown [Solved!]

      我的 Arch Linux 已经用了快半年多,由于 Arch Linux 的滚挂问题,我从没有直接升级过系统。软件版本以及库自然落后了一些。

    RainMark
  • Kosaraju算法、Tarjan算法分析及证明--强连通分量的线性算法

    一、背景介绍 强连通分量是有向图中的一个子图,在该子图中,所有的节点都可以沿着某条路径访问其他节点。强连通性是一种非常重要的等价抽象,因为它满足 自反性:顶点V...

    老白
  • DARPA 开发用于自然语言处理的深度学习项目

    大数据文摘
  • 如何让JedisCluster支持Pipeline

    hmset等批量操作命令与pipeline最大的区别是,前者是原子性命令,比如hmset,如果一次插入的field过多,会导致命令耗时增加;后者非原子性,只是批...

    黄泽杰
  • 天河二号深度解密,你值得拥有

    相信很多人都听说过中国的天河二号,也知道这个庞然大物曾经连续六年登顶超级计算机排行榜,但是大多数人的认知,可能就停留在天河二号的外壳上,也就是大家经常看到的这样...

    用户1621951
  • 【未完成】记一次简单的漏洞挖掘

    简单看一下这个网站是nodejs写的然后是Nginx服务器,猜测是Mysql数据库

    天钧
  • 系统监控-SpringBoot四大神器之Actuator

    首先之前博客提到过使用JDK自带的JVM监控工具、Psi-Probe Tomcat监控工具以及Javamelody,也提到了Psi-Probe的强大,但是Psi...

    秋日芒草
  • 每日算法题:Day 31(Linux)

    给定一棵二叉搜索树,请找出其中的第k小的结点。例如, (5,3,7,2,4,6,8)中,按结点数值大小顺序第三小结点的值为4。

    算法工程师之路

扫码关注云+社区

领取腾讯云代金券