首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Java数据结构-------List

Java数据结构-------List

作者头像
在周末
发布2019-09-11 15:53:34
3750
发布2019-09-11 15:53:34
举报
文章被收录于专栏:在周末的专栏在周末的专栏

三种List:ArrayList,Vector,LinkedList

  类继承关系图

    ArrayList和Vector通过数组实现,几乎使用了相同的算法;区别是ArrayList不是线程安全的,Vector绝大多数方法做了线程同步。

    LinkedList通过双向链表实现。

  源代码分析

    1、添加元素到列表尾端(Appends the specified element to the end of this list.)

      ArrayList:当所需容量超过当前ArrayList的大小时,需要进行扩容,对性能有一定的影响。

         优化策略:在能有效评估ArrayList数组初始值大小的情况下,指定其容量大小有助于性能提升,避免频繁的扩容。

    public boolean add(E e) {
        ensureCapacityInternal(size + 1);  // Increments modCount!! 确保内部数组有足够的空间
        elementData[size++] = e; //将元素放在数组尾部
        return true;
    }
    private void ensureCapacityInternal(int minCapacity) {
        if (elementData == EMPTY_ELEMENTDATA) {
            minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);  //如果数组为空数组,取初始容量和minCapacity中的最大值,初始容量DEFAULT_CAPACITY = 10
        }

        ensureExplicitCapacity(minCapacity);
    }
    private void ensureExplicitCapacity(int minCapacity) {
        modCount++;  //被修改次数,iterator成员变量expectedModCount为创建时的modCount的值,用来判断list是否在迭代过程中被修改

        // overflow-conscious code
        if (minCapacity - elementData.length > 0)
            grow(minCapacity); //如果所需容量大小大于数组的大小就进行扩展
    }
    private void grow(int minCapacity) {
        // overflow-conscious code
        int oldCapacity = elementData.length;
        int newCapacity = oldCapacity + (oldCapacity >> 1); //旧容量的1.5倍。二进制右移一位差不多相当于十进制除以2,对CPU来说,右移比除运算速度更快。如果oldCapacity为偶数,newCapacity为1.5*oldCapacity,否则为1.5*oldCapacity-1。
        if (newCapacity - minCapacity < 0)  //如果计算出的容量不够用,就使用minCapacity
            newCapacity = minCapacity;
        if (newCapacity - MAX_ARRAY_SIZE > 0)  //如果计算出的容量大于MAX_ARRAY_SIZE=Integer.MAX_VALUE-8,
            newCapacity = hugeCapacity(minCapacity);
        // minCapacity is usually close to size, so this is a win:
        elementData = Arrays.copyOf(elementData, newCapacity);//调用System.arraycopy方法复制数组
    }
   //判断是否大于数组最大值Integer.MAX_VALUE,疑问:设置MAX_ARRAY_SIZE=Integer.MAX_VALUE-8的意义是什么?
  private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ?
            Integer.MAX_VALUE :
            MAX_ARRAY_SIZE;
    //
    }

      LinkedList:每次新增元素都需要new一个Node对象,并进行更多的赋值操作。在频繁的调用中,对性能会产生一定的影响。

    public boolean add(E e) {
        linkLast(e);
        return true;
    }
    void linkLast(E e) {
        final Node<E> l = last;
        final Node<E> newNode = new Node<>(l, e, null); //每增加一个节点,都需要new一个Node
        last = newNode;
        if (l == null)
            first = newNode;
        else
            l.next = newNode;
        size++;
        modCount++;
    }
    2、在列表任意位置添加元素

      ArrayList:基于数组实现,数组需要一组连续的内存空间,如果在任意位置插入元素,那么该位置之后的元素需要重新排列,效率低。

     public void add(int index, E element) {
        rangeCheckForAdd(index);//检查索引是否越界

        ensureCapacityInternal(size + 1);  // Increments modCount!!
        System.arraycopy(elementData, index, elementData, index + 1,
                         size - index);//每次操作都会进行数组复制,System.arraycopy可以实现数组自身的复制
        elementData[index] = element;
        size++;
    }
    
    private void rangeCheckForAdd(int index) {
        if (index > size || index < 0)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

      LinkedList:先找到指定位置的元素,然后在该元素之前插入元素。在首尾插入元素,性能较高;在中间位置插入,性能较低。

     //在列表指定位置添加元素
     public void add(int index, E element) {
        checkPositionIndex(index);//检查索引是否越界

        if (index == size) //index为列表大小,相当于在列表尾部添加元素
            linkLast(element);
        else
            linkBefore(element, node(index));
    }

    //返回指定索引的元素,在首尾查找速度快,在中间位置查找速度较慢,需要遍历列表的一半元素。
    Node<E> node(int index) {
        // assert isElementIndex(index);

        if (index < (size >> 1)) {  //如果index在列表的前半部分,从头结点开始向后遍历
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {  //如果index在列表的后半部分,从尾结点开始向前遍历
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }

    //在指定节点succ之前添加元素
    void linkBefore(E e, Node<E> succ) {
        // assert succ != null;
        final Node<E> pred = succ.prev;
        final Node<E> newNode = new Node<>(pred, e, succ);
        succ.prev = newNode;
        if (pred == null) //只有succ一个节点
            first = newNode;
        else
            pred.next = newNode;
        size++;
        modCount++;
    }
    3、删除任意位置元素

      ArrayList:每次删除都会复制数组。删除的位置越靠前,开销越大;删除的位置越靠后,开销越小。

    public E remove(int index) {
        rangeCheck(index);//检查索引是否越界

        modCount++;
        E oldValue = elementData(index);

        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);//将删除位置后面的元素往前移动一位
        elementData[--size] = null; // clear to let GC do its work  最后一个位置设置为null

        return oldValue;
    }

      LinkedList:先通过循环找到要删除的元素,然后删除该元素。删除首尾的元素,效率较高;删除中间元素,效率较差。

    public E remove(int index) {
        checkElementIndex(index);
        return unlink(node(index));
    }

    E unlink(Node<E> x) {
        // assert x != null;
        final E element = x.item;
        final Node<E> next = x.next;
        final Node<E> prev = x.prev;

        if (prev == null) {  //x为第一个元素
            first = next;
        } else {
            prev.next = next;
            x.prev = null;
        }

        if (next == null) {  //x为最后一个元素
            last = prev;
        } else {
            next.prev = prev;
            x.next = null;
        }

        x.item = null;
        size--;
        modCount++;
        return element;
    }
    4、遍历列表

      三种遍历方式:foreach,迭代器,for遍历随机访问。

      foreach的内部实现也是使用迭代器进行遍历,但由于foreach存在多余的赋值操作,比直接使用迭代器稍慢,影响不大。for遍历随机访问对ArrayList性能较好,对LinkedList是灾难性的。

  并发List

    Vector和CopyOnWriteArrayList是线程安全的实现;

    ArrayList不是线程安全的,可通过Collections.synchronizedList(list)进行包装。

    CopyOnWriteArrayList,读操作不需要加锁,

      1、读操作

        CopyOnWriteArrayList:读操作没有锁操作

    public E get(int index) {
        return get(getArray(), index);
    }

    final Object[] getArray() {
        return array;
    }
    
    private E get(Object[] a, int index) {
        return (E) a[index];
    }

        Vector:读操作需要加对象锁,高并发情况下,锁竞争影响性能。

    public synchronized E get(int index) {
        if (index >= elementCount)
            throw new ArrayIndexOutOfBoundsException(index);

        return elementData(index);
    }
      2、写操作

        CopyOnWriteArrayList:需要加锁且每次写操作都需要进行一次数组复制,性能较差。

    public boolean add(E e) {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            Object[] elements = getArray();
            int len = elements.length;
            Object[] newElements = Arrays.copyOf(elements, len + 1);  //通过复制生成数组副本
            newElements[len] = e;  //修改副本
            setArray(newElements); //将副本写会
            return true;
        } finally {
            lock.unlock();
        }
    }

        Vector:和读一样需要加对象锁,相对CopyOnWriteArrayList来说不需要复制,写性能比CopyOnWriteArrayList要高。

    public synchronized boolean add(E e) {
        modCount++;
        ensureCapacityHelper(elementCount + 1); //确认是否需要扩容
        elementData[elementCount++] = e;
        return true;
    }
    private void ensureCapacityHelper(int minCapacity) {
        // overflow-conscious code
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }
      总结:在读多写少的高并发应用中,适合使用CopyOnWriteArrayList;在读少写多的高并发应用中,Vector更适合。
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2017-09-26 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 三种List:ArrayList,Vector,LinkedList
    •   类继承关系图
      •   源代码分析
        •   并发List
        相关产品与服务
        腾讯云代码分析
        腾讯云代码分析(内部代号CodeDog)是集众多代码分析工具的云原生、分布式、高性能的代码综合分析跟踪管理平台,其主要功能是持续跟踪分析代码,观测项目代码质量,支撑团队传承代码文化。
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档