前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >标签传播算法(llgc 或 lgc)

标签传播算法(llgc 或 lgc)

作者头像
py3study
发布2020-01-19 10:45:23
9530
发布2020-01-19 10:45:23
举报
文章被收录于专栏:python3python3

动手实践标签传播算法

复现论文:Learning with Local and Global Consistency1

lgc 算法可以参考:DecodePaper/notebook/lgc

初始化算法

载入一些必备的库:

代码语言:javascript
复制
from IPython.display import set_matplotlib_formats
%matplotlib inline
#set_matplotlib_formats('svg', 'pdf')

import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial.distance import cdist
from sklearn.datasets import make_moons

save_dir = '../data/images'

创建一个简单的数据集

利用 make_moons 生成一个半月形数据集。

代码语言:javascript
复制
n = 800   # 样本数
n_labeled = 10 # 有标签样本数
X, Y = make_moons(n, shuffle=True, noise=0.1, random_state=1000)

X.shape, Y.shape
代码语言:javascript
复制
((800, 2), (800,))
代码语言:javascript
复制
def one_hot(Y, n_classes):
    '''
    对标签做 one_hot 编码
    
    参数
    =====
    Y: 从 0 开始的标签
    n_classes: 类别数
    '''
    out = Y[:, None] == np.arange(n_classes)
    return out.astype(float)
代码语言:javascript
复制
color = ['red' if l == 0 else 'blue' for l in Y]
plt.scatter(X[:, 0], X[:, 1], color=color)
plt.savefig(f"{save_dir}/bi_classification.pdf", format='pdf')
plt.show()

Y_input = np.concatenate((one_hot(Y[:n_labeled], 2), np.zeros((n-n_labeled, 2))))

算法过程:

Step 1: 创建相似度矩阵 W

代码语言:javascript
复制
def rbf(x, sigma):
    return np.exp((-x)/(2* sigma**2))
代码语言:javascript
复制
sigma = 0.2
dm = cdist(X, X, 'euclidean')
vfunc = np.vectorize(rbf)
vfunc = np.vectorize(rbf)
W = vfunc(dm, sigma)
np.fill_diagonal(W, 0)   # 对角线全为 0

Step 2: 计算 S

\[ S = D^{-\frac{1}{2}} W D^{-\frac{1}{2}} \]

向量化编程:

代码语言:javascript
复制
def calculate_S(W):
    d = np.sum(W, axis=1) 
    D_ = np.sqrt(d*d[:, np.newaxis]) # D_ 是 np.sqrt(np.dot(diag(D),diag(D)^T))
    return np.divide(W, D_, where=D_ != 0)


S = calculate_S(W)

迭代一次的结果

代码语言:javascript
复制
alpha = 0.99
F = np.dot(S, Y_input)*alpha + (1-alpha)*Y_input

Y_result = np.zeros_like(F)
Y_result[np.arange(len(F)), F.argmax(1)] = 1

Y_v = [1 if x == 0 else 0 for x in Y_result[0:,0]]

color = ['red' if l == 0 else 'blue' for l in Y_v]
plt.scatter(X[0:,0], X[0:,1], color=color)
#plt.savefig("iter_1.pdf", format='pdf')
plt.show()

Step 3: 迭代 F "n_iter" 次直到收敛

代码语言:javascript
复制
n_iter = 150
F = Y_input
for t in range(n_iter):
    F = np.dot(S, F)*alpha + (1-alpha)*Y_input

Step 4: 画出最终结果

代码语言:javascript
复制
Y_result = np.zeros_like(F)
Y_result[np.arange(len(F)), F.argmax(1)] = 1

Y_v = [1 if x == 0 else 0 for x in Y_result[0:,0]]

color = ['red' if l == 0 else 'blue' for l in Y_v]
plt.scatter(X[0:,0], X[0:,1], color=color)
#plt.savefig("iter_n.pdf", format='pdf')
plt.show()
代码语言:javascript
复制
from sklearn import metrics

print(metrics.classification_report(Y, F.argmax(1)))

acc = metrics.accuracy_score(Y, F.argmax(1))
print('准确度为',acc)
代码语言:javascript
复制
              precision    recall  f1-score   support

           0       1.00      0.86      0.92       400
           1       0.88      1.00      0.93       400

   micro avg       0.93      0.93      0.93       800
   macro avg       0.94      0.93      0.93       800
weighted avg       0.94      0.93      0.93       800

准确度为 0.92875

sklearn 实现 lgc

参考:https://scikit-learn.org/stable/modules/label_propagation.html

在 sklearn 里提供了两个 lgc 模型:LabelPropagationLabelSpreading,其中后者是前者的正则化形式。\(W\) 的计算方式提供了 rbfknn

  • rbf 核由参数 gamma控制(\(\gamma=\frac{1}{2{\sigma}^2}\))
  • knn 核 由参数 n_neighbors(近邻数)控制
代码语言:javascript
复制
def pred_lgc(X, Y, F, numLabels):
    from sklearn import preprocessing 
    from sklearn.semi_supervised import LabelSpreading
    cls = LabelSpreading(max_iter=150, kernel='rbf', gamma=0.003, alpha=.99)
    # X.astype(float) 为了防止报错 "Numerical issues were encountered "
    cls.fit(preprocessing.scale(X.astype(float)), F)
    ind_unlabeled = np.arange(numLabels, len(X))
    y_pred = cls.transduction_[ind_unlabeled]
    y_true = Y[numLabels:].astype(y_pred.dtype)
    return y_true, y_pred
代码语言:javascript
复制
Y_input = np.concatenate((Y[:n_labeled], -np.ones(n-n_labeled)))
y_true, y_pred = pred_lgc(X, Y, Y_input, n_labeled)
print(metrics.classification_report(Y, F.argmax(1)))
代码语言:javascript
复制
              precision    recall  f1-score   support

           0       1.00      0.86      0.92       400
           1       0.88      1.00      0.93       400

   micro avg       0.93      0.93      0.93       800
   macro avg       0.94      0.93      0.93       800
weighted avg       0.94      0.93      0.93       800

networkx 实现 lgc

参考:networkx.algorithms.node_classification.lgc.local_and_global_consistency 具体的细节,我还没有研究!先放一个简单的例子:

代码语言:javascript
复制
G = nx.path_graph(4)
G.node[0]['label'] = 'A'
G.node[3]['label'] = 'B'
G.nodes(data=True)

G.edges()

predicted = node_classification.local_and_global_consistency(G)
predicted
代码语言:javascript
复制
['A', 'A', 'B', 'B']

更多精彩内容见:DecodePaper 觉得有用,记得给个 star !(@DecodePaper)


  1. Zhou D, Bousquet O, Lal T N, et al. Learning with Local and Global Consistency[C]. neural information processing systems, 2003: 321-328.
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2019-02-28 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 动手实践标签传播算法
    • 初始化算法
      • 创建一个简单的数据集
        • 算法过程:
          • Step 1: 创建相似度矩阵 W
          • Step 2: 计算 S
          • 迭代一次的结果
          • Step 3: 迭代 F "n_iter" 次直到收敛
          • Step 4: 画出最终结果
        • sklearn 实现 lgc
        • networkx 实现 lgc
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档