专栏首页cwl_Java速读原著-TCP/IP(IP分片)

速读原著-TCP/IP(IP分片)

第11章 UDP:用户数据报协议

11.5 IP分片

正如我们在2 . 8节描述的那样,物理网络层一般要限制每次发送数据帧的最大长度。任何时候I P层接收到一份要发送的 I P数据报时,它要判断向本地哪个接口发送数据(选路),并查询该接口获得其M T U。I P把M T U与数据报长度进行比较,如果需要则进行分片。分片可以发生在原始发送端主机上,也可以发生在中间路由器上。

把一份I P数据报分片以后,只有到达目的地才进行重新组装(这里的重新组装与其他网络协议不同,它们要求在下一站就进行进行重新组装,而不是在最终的目的地)。重新组装由目的端的 I P层来完成,其目的是使分片和重新组装过程对运输层( T C P和U D P)是透明的,除了某些可能的越级操作外。已经分片过的数据报有可能会再次进行分片(可能不止一次)。I P首部中包含的数据为分片和重新组装提供了足够的信息。

回忆I P首部(图3 - 1),下面这些字段用于分片过程。对于发送端发送的每份 I P数据报来说,其标识字段都包含一个唯一值。该值在数据报分片时被复制到每个片中(我们现在已经看到这个字段的用途)。标志字段用其中一个比特来表示“更多的片”。除了最后一片外,其他每个组成数据报的片都要把该比特置 1。片偏移字段指的是该片偏移原始数据报开始处的位置。

另外,当数据报被分片后,每个片的总长度值要改为该片的长度值。最后,标志字段中有一个比特称作“不分片”位。如果将这一比特置 1,I P将不对数据报进行分片。相反把数据报丢弃并发送一个 I C M P差错报文(“需要进行分片但设置了不分片比特”,见图6 - 3)给起始端。在下一节我们将看到出现这个差错的例子。

当I P数据报被分片后,每一片都成为一个分组,具有自己的 I P首部,并在选择路由时与其他分组独立。这样,当数据报的这些片到达目的端时有可能会失序,但是在 I P首部中有足够的信息让接收端能正确组装这些数据报片。

尽管I P分片过程看起来是透明的,但有一点让人不想使用它:即使只丢失一片数据也要重传整个数据报。为什么会发生这种情况呢?因为 I P层本身没有超时重传的机制——由更高层来负责超时和重传(T C P有超时和重传机制,但U D P没有。一些U D P应用程序本身也执行超时和重传)。当来自T C P报文段的某一片丢失后,T C P在超时后会重发整个T C P报文段,该报文段对应于一份I P数据报。没有办法只重传数据报中的一个数据报片。事实上,如果对数据报分片的是中间路由器,而不是起始端系统,那么起始端系统就无法知道数据报是如何被分片的。就这个原因,经常要避免分片。文献[Kent and Mogul 1987]对避免分片进行了论述。

使用U D P很容易导致I P分片(在后面我们将看到, T C P试图避免分片,但对于应用程序来说几乎不可能强迫 T C P发送一个需要进行分片的长报文段)。我们可以用 s o c k程序来增加数据报的长度,直到分片发生。在一个以太网上,数据帧的最大长度是 1 5 0 0字节(见图 2 - 1),其中1 4 7 2字节留给数据,假定 I P首部为2 0字节, U D P首部为8字节。我们分别以数据长度为 1471, 1472, 1473和1 4 7 4字节运行s o c k程序。最后两次应该发生分片:

相应的t c p d u m p输出如图11 - 7所示。

前两份U D P数据报(第1行和第2行)能装入以太网数据帧,没有被分片。但是对应于写1 4 7 3字节的I P数据报长度为1 5 0 1,就必须进行分片(第3行和第4行)。同理,写1 4 7 4字节产生的数据报长度为1 5 0 2,它也需要进行分片(第5行和第6行)。 当I P数据报被分片后,t c p d u m p打印出其他的信息。首先, frag 26304(第3行和第4行)和frag 26313(第5行和第6行)指的是I P首部中标识字段的值。

分片信息中的下一个数字,即第 3行中位于冒号和@号之间的1 4 8 0,是除I P首部外的片长。两份数据报第一片的长度均为 1 4 8 0:U D P首部占8字节,用户数据占1 4 7 2字节(加上I P首部的2 0字节分组长度正好为 1 5 0 0字节)。第1份数据报的第2片(第4行)只包含1字节数据—剩下的用户数据。第2份数据报的第2片(第6行)包含剩下的2字节用户数据。

在分片时,除最后一片外,其他每一片中的数据部分(除 I P首部外的其余部分)必须是 8字节的整数倍。在本例中, 1 4 8 0是8的整数倍。

位于@符号后的数字是从数据报开始处计算的片偏移值。两份数据报第1片的偏移值均为0(第3行和第5行),第2片的偏移值为1 4 8 0(第4行和第6行)。跟在偏移值后面的加号对应于I P首部中3 bit标志字段中的“更多片”比特。设置这一比特的目的是让接收端知道在什么时候完成所有的分片组装。

最后,注意第4行和第6行(不是第1片)省略了协议名(U D P)、源端口号和目的端口号。协议名是可以打印出来的,因为它在 I P首部并被复制到各个片中。但是,端口号在 U D P首部,只能在第1片中被发现。

发送的第3份数据报(用户数据为 1 4 7 3字节)分片情况如图 11 - 8所示。需要重申的是,任何运输层首部只出现在第1片数据中。

另外需要解释几个术语: I P数据报是指 I P层端到端的传输单元(在分片之前和重新组装之后),分组是指在I P层和链路层之间传送的数据单元。一个分组可以是一个完整的 I P数据报,也可以是I P数据报的一个分片。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • ElasticSearch(7.2.2)-ElasticSearch核心概念的介绍

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 ...

    cwl_java
  • 速读原著-TCP/IP(UDP:用户数据报协议)

    U D P是一个简单的面向数据报的运输层协议:进程的每个输出操作都正好产生一个 U D P数据报,并组装成一份待发送的 I P数据报。这与面向流字符的协议不同,...

    cwl_java
  • 速读原著-TCP/IP(采用UDP的路径MTU发现)

    下面对使用U D P的应用程序与路径 M T U发现机制之间的交互作用进行研究。看一看如果应用程序写了一个对于一些中间链路来说太长的数据报时会发生什么情况。

    cwl_java
  • 数据库分库分表,分片配置轻松入门!

    当我们把 MyCat + MySQL 的架构搭建完成之后,接下来面临的一个问题就是,数据库的分片规则:有那么多 MySQL ,一条记录通过 MyCat 到底要插...

    江南一点雨
  • 『互联网架构』软件架构-Sharding-Sphere分库分表(66)

    水平拆分的数据库(表)的相同逻辑和数据结构表的总称。例:订单数据根据主键尾数拆分为10张表,分别是torder0到torder9,他们的逻辑表名为t_order...

    IT故事会
  • 以太坊分片Sharding FAQ

    目前,在所有的区块链协议中每个节点存储所有的状态(账户余额,合约代码和存储等等)并且处理所有的交易。这提供了大量的安全性,但极大的限制了可扩展性:区块链不能处理...

    芒果2018
  • RChain的跨分片交易算法

    岑玉海
  • MongoDB之分片集群(Sharding)

    分片(sharding)是一个通过多台机器分配数据的方法。MongoDB使用分片支持大数据集和高吞吐量的操作。大数据集和高吞吐量的数据库系统挑战着单一服务的性能...

    小忽悠
  • MongoDB之分片集群(Sharding)

      分片(sharding)是一个通过多台机器分配数据的方法。MongoDB使用分片支持大数据集和高吞吐量的操作。大数据集和高吞吐量的数据库系统挑战着单一服务的...

    小忽悠
  • 以太坊分片Sharding FAQ

    目前,在所有的区块链协议中每个节点存储所有的状态(账户余额,合约代码和存储等等)并且处理所有的交易。这提供了大量的安全性,但极大的限制了可扩展性:区块链不能处理...

    笔阁

扫码关注云+社区

领取腾讯云代金券