算法(Algorithm)是指用来操作数据、解决程序问题的一组方法。对于同一个问题,使用不同的算法,也许最终得到的结果是一样的,但在过程中消耗的资源和时间却会有很大的区别。那么我们应该如何去衡量不同算法之间的优劣呢?
主要还是从算法所占用的「时间」和「空间」两个维度去考量。
因此,评价一个算法的效率主要是看它的时间复杂度和空间复杂度情况。然而,有的时候时间和空间却又是「鱼和熊掌」,不可兼得的,那么我们就需要从中去取一个平衡点。
O | 名称 | 举例 |
---|---|---|
1 | 常数阶 | 一次赋值 |
log2n | 对数阶 | 二分查找 |
n | 线性阶 | 线性查找 |
nlog2n | 线性对数阶 | 快速排序 |
n^2 | 平方阶 | 两重循环 |
n^3 | 立方阶 | 三重循环 |
2^n | 指数阶 | 递归求斐波那契数列 |
n! | 阶乘阶 | 旅行商问题 |
说明:常见的时间复杂度有小到大依次排序,随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低
无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1)。
i = 1
n = 1000
while i < n:
i = i * 2
说明: 在while循环里面,每次都将 i 乘以 2,乘完之后,i 距离 n 就越来越近了。假设循环x次之后,i 就大于 n 了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n,那么 x = log2n也就是说当循环 log2n 次以后,这个代码就结束了。因此这个代码的时间复杂度为:O(log2n) 。 O(log2n) 的这个 2 时间上是根据代码变化的,若 i = i * 3 ,则是 O(log3n) 。
常见:二分查找
for i in range(n):
j += 1
说明: 这段代码,for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度。
for i in range(n):
while j < n:
j = j * 2
说明: 线性对数阶O(nlogN) 其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是O(nlogN)。
for i in range(n):
for j in range(n):
x += 1
说明: 平方阶O(n²) 就更容易理解了,如果把 O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O(n²),这段代码其实就是嵌套了2层n循环,它的时间复杂度就是 O(nn),即 O(n²) 。如果将其中一层循环的n改成m,那它的时间复杂度就变成了 O(mn)
3次n循环
k次n循环
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有