专栏首页linjinhe的专栏现代 C++:自动类型推导

现代 C++:自动类型推导

自动类型推导

现代的编程语言,不管是动态语言(JavaScript、Python 等),还是静态语言(Go、Rust 等),大都支持自动类型推导(type deduction)。

自动类型推导,通俗地讲就是定义一个变量的时候不需要明确指定类型,而是让编译器根据上下文进行推导。

在 C++11 之前,模板(template)代码就支持编译器自动类型推导。C++11 很重要的一个特性就是加强了编译器自动类型推导的能力,使之不限于模板 —— 与此相关的关键字有两个 autodecltype

auto

我们来看看 auto 关键字在 C++ 中的使用。 最简单的用法,定义变量的时候不指定类型,通过初始化的值让编译器自动推导。

auto a;                                          // 编译不通过

auto b = 0;                                    // b 是 int 类型
auto c = 0ull;                                // c 是 unsigned long long 类型  
auto d = "Hello World";           // d 是 const char* 类型
auto e = std::string("Hello"); // e 是 std::string 类型

auto 和容器类型、迭代器一起配合使用,可以少打很多字,代码也更简洁、清晰。

  std::vector<int> v(10, 1); 
  auto itr_begin = v.begin();  // std::vector<int>::iterator
  auto itr_end = v.end();         // std::vector<int>::iterator
  auto sz = v.size();                    // std::vector<int>::size_type

如果不用自动类型推导,下面 v 的类型写起来也很麻烦。如果 b 和 e 是自定义的迭代器,不一定能用 typename std::iterator_traits<Iter>::value_type 来获得类型。

template<typename Iter>
void Process(Iter b, Iter e) {
  while (b != e) {
    auto v = *b;     // 如果不用自动类型推导,如何获得 *b 的类型
    // typename std::iterator_traits<Iter>::value_type v = *b; 
    std::cout << v << std::endl;
    ++b;
  }
}

类型推导可以和 Lambda 表达式一起愉快地使用。

auto Plus = [](int a, int b) { return a + b; };

也许有人会说,Lambda 表达式可以用一个 std::function<T> 对象来包装。

std::function<int(int, int)> PlusFunc = [](int a, int b) { return a + b; };

但是这样做有几点不好:

  1. std::function<T> 内部会涉及动态内存分配,性能上劣于自动类型推导的实现;
  2. 让代码看起来复杂不少;
  3. 对于泛型 Lambda 表达式,std::function<T> 也无能为力了。
auto Plus = [](auto a, auto b) { return a + b; };    // std::function<T> 的类型没法写了
std::cout << Plus(3, 4) << std::endl;
std::cout << Plus(3.14, 1.11) << std::endl;
std::cout << Plus(std::string("hello"), std::string("world")) << std::endl;

某些情况下,自动类型推导还可以让你避免一些“坑”。比如:

std::unordered_map<std::string, int> m;
// ...
for (const std::pair<std::string, int>& pa : m) {    // 你觉得有没有问题?
    // ... 
}

看得出上面这段代码有什么问题吗?<br />上面的代码会导致复制整个 unordered_map。因为 std::unordered_map<Key, T>::value_type 的类型是 std::pair<const Key, T>。正确的写法应该是:

for (const std::pair<const std::string, Foo>& pa : m) {
    // ...
}

用自动类型推导可以简单避免这个坑:

for (const auto& pa : m) {
    // ...
}

当然,用自动类型推导的时候,也可能引入一些坑。比如:

std::vector<bool> v2; 
v2.push_back(true);
v2.push_back(false);
auto b2 = v2[0];            // b2 是什么类型?

因为 std::vector<bool> 的特殊实现原因,变量 b2 不是一个 bool 类型,而是一个自定义的类。(无论你是否使用自动类型推导,都尽可能不要使用 std::vector<bool>。)

decltype

decltype 的作用是,告诉你一个表达式/变量/常量是什么类型。比如:

std::cout << typeid(decltype(1)).name() << std::endl;   // 输出 i,表示 int

float f;
std::cout << typeid(decltype(f)).name() << std::endl;  // 输出 f,表示 float

unsigned a = 1;
unsigned long long b = 2;
std::cout << typeid(decltype(a + b)).name() << std::endl;  // 输出 y,表示 unsigned long long

typeid(T).name() 在不同的编译器下的输出可能不一样。本文在 Ubuntu 上使用 gcc 7.5 进行编译。typeid(T).name() 的输出可以通过 c++filt 工具转换成实际可读的类型名称。

相比 auto,decltype 用得少很多。 举一个例子:

template<typename T, typename U>
??? Plus(T t, U u) 
  return t + u;
}

t + u 到底应该返回什么类型?

Plus(1, 2);      // 返回值类型应该是 int
Plus(1, 2.0);  // 返回值类型应该是 double 

使用 decltype 的 trailing return type 来解决这个问题:

template<typename T, typename U>
auto Plus(T t, U u) -> decltype(t + u) {
  return t + u;
}

C++ 14 进行了加强,可以省掉这条尾巴。

template<typename T, typename U>
auto Plus(T t, U u) {
  return t + u;
}

如果函数有多个 return 语句,需要保证它们返回的类型都是一样的才能成功编译。

// error: inconsistent deduction for auto return type: ‘int’ and then ‘double’
auto f(int i) {
  if (i == 1) {
    return 1;
  } else {
    return 2.0;
  }
}

decltype(auto)

使用 auto 需要自己手动说明是值类型还是引用类型。C++14 引入 decltype(auto) 来自动推导精确类型——其实 decltype(auto) 算是 decltype(expr) 的一个语法糖。

std::vector<std::string> v{"C++98", "C++03", "C++11",
                                                    "C++14", "C++17", "C++20"};

// v[0] 的返回值类型是 std::string&,但是 a 是 std::string
auto a = v[0]; 
// a 是 std::string&
auto& b = v[0];  
// C++11,我们可以这样确定精确类型,c 是 std::string&
// 但是,如果 v[0] 变成一个复杂的表达式,代码写出来可能很难看懂
decltype(v[0]) c = v[0];  
// C++14 引入了 decltype(auto),可以自动推导出精确类型。d 是 std::string&
decltype(auto) d = v[0];

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • LevelDB 完全解析(0):基本原理和整体架构

    之前零零散散写过几篇和 LSM-Tree、LevelDB 有关的文章。之后也看了一些代码和论文,笔记也做了一些,但大都比较零乱、随意,没花功夫整理。

    linjinhe
  • LevelDB:整体架构

    上图简单展示了 LevelDB 的整体架构。LevelDB 的静态结构主要由六个部分组成:

    linjinhe
  • LevelDB 完全解析(7):初始化

    options - 打开/创建 LevelDB 实例的配置参数。 dbname - 保存数据的目录名。 dbptr - 初始化成功的 LevelDB 实例保...

    linjinhe
  • 业务安全与合规要求双重驱动下,企业如何有效落地数据加密防护?

    近年来数据泄露事件频频发生,外部威胁和内部威胁左右夹击。数据显示,全球平均每天有上千万条数据被泄露,其中只有2%的数据经过加密,在泄露后未造成损失。由于不安全的...

    云鼎实验室
  • 吐血推荐:这个开源工具你值得拥有,让你轻松面对各种调试

    前天晚上分享了一篇国人把 GitHub 玩出新高度的文章,培训机构的学员为了找工作买卖 GitHub 账号,很多人说:其实面试的时候,只要深度一点的询问,一问就...

    非著名程序员
  • Github泄露扫描系统

    配置好conf/app.ini中的参数后使用WEB参数后启动WEB服务器。默认会监听到本地的8000端口,默认的管理员账户和密码分别为:xsec和x@xsec....

    伍尚国
  • 80-综合练习:记账小程序

    凯茜的老爸
  • 原 高效读取Excel

    魂祭心
  • 行百里者半九十,文件写90%崩了呢?

    在这里没有对文件有任何的异常处理。假如文件写坏了怎么办?如果一个文件很大,比如你在下片,好几个G,下到一半网断了,是不是很崩溃?这时候就需要断点续传。本文介绍一...

    Apache IoTDB
  • linux编辑文件保存退出的实操讲解

    vi保存文件有不同的选项,对应于不同的命令,你可以从下面的命令中选择一个需要的输入:

    砸漏

扫码关注云+社区

领取腾讯云代金券