专栏首页linjinhe的专栏现代 C++:一文读懂智能指针

现代 C++:一文读懂智能指针

智能指针

C++11 引入了 3 个智能指针类型:

  1. std::unique_ptr<T> :独占资源所有权的指针。
  2. std::shared_ptr<T> :共享资源所有权的指针。
  3. std::weak_ptr<T> :共享资源的观察者,需要和 std::shared_ptr 一起使用,不影响资源的生命周期。

std::auto_ptr 已被废弃。

std::unique_ptr

简单说,当我们独占资源的所有权的时候,可以使用 std::unique_ptr 对资源进行管理——离开 unique_ptr 对象的作用域时,会自动释放资源。这是很基本的 RAII 思想。

std::unique_ptr 的使用比较简单,也是用得比较多的智能指针。这里直接看例子。

  1. 使用裸指针时,要记得释放内存。
{
    int* p = new int(100);
    // ...
    delete p;  // 要记得释放内存
}
  1. 使用 std::unique_ptr 自动管理内存。
{
    std::unique_ptr<int> uptr = std::make_unique<int>(200);
    //...
    // 离开 uptr 的作用域的时候自动释放内存
}
  1. std::unique_ptr 是 move-only 的。
{
    std::unique_ptr<int> uptr = std::make_unique<int>(200);
    std::unique_ptr<int> uptr1 = uptr;  // 编译错误,std::unique_ptr<T> 是 move-only 的

    std::unique_ptr<int> uptr2 = std::move(uptr);
    assert(uptr == nullptr);
}
  1. std::unique_ptr 可以指向一个数组。
{
    std::unique_ptr<int[]> uptr = std::make_unique<int[]>(10);
    for (int i = 0; i < 10; i++) {
        uptr[i] = i * i;
    }   
    for (int i = 0; i < 10; i++) {
        std::cout << uptr[i] << std::endl;
    }   
}
  1. 自定义 deleter。
{
    struct FileCloser {
        void operator()(FILE* fp) const {
            if (fp != nullptr) {
                fclose(fp);
            }
        }   
    };  
    std::unique_ptr<FILE, FileCloser> uptr(fopen("test_file.txt", "w"));
}
  1. 使用 Lambda 的 deleter。
{
    std::unique_ptr<FILE, std::function<void(FILE*)>> uptr(
        fopen("test_file.txt", "w"), [](FILE* fp) {
            fclose(fp);
        });
}

std::shared_ptr

std::shared_ptr 其实就是对资源做引用计数——当引用计数为 0 的时候,自动释放资源。

{
    std::shared_ptr<int> sptr = std::make_shared<int>(200);
    assert(sptr.use_count() == 1);  // 此时引用计数为 1
    {   
        std::shared_ptr<int> sptr1 = sptr;
        assert(sptr.get() == sptr1.get());
        assert(sptr.use_count() == 2);   // sptr 和 sptr1 共享资源,引用计数为 2
    }   
    assert(sptr.use_count() == 1);   // sptr1 已经释放
}
// use_count 为 0 时自动释放内存

和 unique_ptr 一样,shared_ptr 也可以指向数组和自定义 deleter。

{
    // C++20 才支持 std::make_shared<int[]>
    // std::shared_ptr<int[]> sptr = std::make_shared<int[]>(100);
    std::shared_ptr<int[]> sptr(new int[10]);
    for (int i = 0; i < 10; i++) {
        sptr[i] = i * i;
    }   
    for (int i = 0; i < 10; i++) {
        std::cout << sptr[i] << std::endl;
    }   
}

{
    std::shared_ptr<FILE> sptr(
        fopen("test_file.txt", "w"), [](FILE* fp) {
            std::cout << "close " << fp << std::endl;
            fclose(fp);
        });
}

std::shared_ptr 的实现原理

一个 shared_ptr 对象的内存开销要比裸指针和无自定义 deleter 的 unique_ptr 对象略大。

  std::cout << sizeof(int*) << std::endl;  // 输出 8
  std::cout << sizeof(std::unique_ptr<int>) << std::endl;  // 输出 8
  std::cout << sizeof(std::unique_ptr<FILE, std::function<void(FILE*)>>)
            << std::endl;  // 输出 40

  std::cout << sizeof(std::shared_ptr<int>) << std::endl;  // 输出 16
  std::shared_ptr<FILE> sptr(fopen("test_file.txt", "w"), [](FILE* fp) {
    std::cout << "close " << fp << std::endl;
    fclose(fp);
  }); 
  std::cout << sizeof(sptr) << std::endl;  // 输出 16

无自定义 deleter 的 unique_ptr 只需要将裸指针用 RAII 的手法封装好就行,无需保存其它信息,所以它的开销和裸指针是一样的。如果有自定义 deleter,还需要保存 deleter 的信息。

shared_ptr 需要维护的信息有两部分:

  1. 指向共享资源的指针。
  2. 引用计数等共享资源的控制信息——实现上是维护一个指向控制信息的指针。

所以,shared_ptr 对象需要保存两个指针。shared_ptr 的 的 deleter 是保存在控制信息中,所以,是否有自定义 deleter 不影响 shared_ptr 对象的大小。

当我们创建一个 shared_ptr 时,其实现一般如下:

std::shared_ptr<T> sptr1(new T);

image

复制一个 shared_ptr :

std::shared_ptr<T> sptr2 = sptr1;

image

为什么控制信息和每个 shared_ptr 对象都需要保存指向共享资源的指针?可不可以去掉 shared_ptr 对象中指向共享资源的指针,以节省内存开销?

答案是:不能。 因为 shared_ptr 对象中的指针指向的对象不一定和控制块中的指针指向的对象一样。

来看一个例子。

struct Fruit {
    int juice;
};

struct Vegetable {
    int fiber;
};

struct Tomato : public Fruit, Vegetable {
    int sauce;
};

 // 由于继承的存在,shared_ptr 可能指向基类对象
std::shared_ptr<Tomato> tomato = std::make_shared<Tomato>();
std::shared_ptr<Fruit> fruit = tomato;
std::shared_ptr<Vegetable> vegetable = tomato;

image

另外,std::shared_ptr 支持 aliasing constructor。

template< class Y >
shared_ptr( const shared_ptr<Y>& r, element_type* ptr ) noexcept;

Aliasing constructor,简单说就是构造出来的 shared_ptr 对象和参数 r 指向同一个控制块(会影响 r 指向的资源的生命周期),但是指向共享资源的指针是参数 ptr。看下面这个例子。

using Vec = std::vector<int>;
std::shared_ptr<int> GetSPtr() {
    auto elts = {0, 1, 2, 3, 4};
    std::shared_ptr<Vec> pvec = std::make_shared<Vec>(elts);
    return std::shared_ptr<int>(pvec, &(*pvec)[2]);
}

std::shared_ptr<int> sptr = GetSPtr();
for (int i = -2; i < 3; ++i) {
    printf("%d\n", sptr.get()[i]);
}

image

看上面的例子,使用 std::shared_ptr 时,会涉及两次内存分配:一次分配共享资源对象;一次分配控制块。C++ 标准库提供了 std::make_shared 函数来创建一个 shared_ptr 对象,只需要一次内存分配。

image

这种情况下,不用通过控制块中的指针,我们也能知道共享资源的位置——这个指针也可以省略掉。

image

std::weak_ptr

std::weak_ptr 要与 std::shared_ptr 一起使用。 一个 std::weak_ptr 对象看做是 std::shared_ptr 对象管理的资源的观察者,它不影响共享资源的生命周期:

  1. 如果需要使用 weak_ptr 正在观察的资源,可以将 weak_ptr 提升为 shared_ptr。
  2. 当 shared_ptr 管理的资源被释放时,weak_ptr 会自动变成 nullptr。\
void Observe(std::weak_ptr<int> wptr) {
    if (auto sptr = wptr.lock()) {
        std::cout << "value: " << *sptr << std::endl;
    } else {
        std::cout << "wptr lock fail" << std::endl;
    }
}

std::weak_ptr<int> wptr;
{
    auto sptr = std::make_shared<int>(111);
    wptr = sptr;
    Observe(wptr);  // sptr 指向的资源没被释放,wptr 可以成功提升为 shared_ptr
}
Observe(wptr);  // sptr 指向的资源已被释放,wptr 无法提升为 shared_ptr

image

当 shared_ptr 析构并释放共享资源的时候,只要 weak_ptr 对象还存在,控制块就会保留,weak_ptr 可以通过控制块观察到对象是否存活。

image

enable_shared_from_this

一个类的成员函数如何获得指向自身(this)的 shared_ptr? 看看下面这个例子有没有问题?

class Foo {
 public:
  std::shared_ptr<Foo> GetSPtr() {
    return std::shared_ptr<Foo>(this);
  }
};

auto sptr1 = std::make_shared<Foo>();
assert(sptr1.use_count() == 1);
auto sptr2 = sptr1->GetSPtr();
assert(sptr1.use_count() == 1);
assert(sptr2.use_count() == 1);

上面的代码其实会生成两个独立的 shared_ptr,他们的控制块是独立的,最终导致一个 Foo 对象会被 delete 两次。

image

成员函数获取 this 的 shared_ptr 的正确的做法是继承 std::enable_shared_from_this<T>。

class Bar : public std::enable_shared_from_this<Bar> {
 public:
  std::shared_ptr<Bar> GetSPtr() {
    return shared_from_this();
  }
};

auto sptr1 = std::make_shared<Bar>();
assert(sptr1.use_count() == 1);
auto sptr2 = sptr1->GetSPtr();
assert(sptr1.use_count() == 2);
assert(sptr2.use_count() == 2);

一般情况下,继承了 std::enable_shared_from_this<T> 的子类,成员变量中增加了一个指向 this 的 weak_ptr。这个 weak_ptr 在第一次创建 shared_ptr 的时候会被初始化,指向 this。

image

似乎继承了 std::enable_shared_from_this<T> 的类都被强制必须通过 shared_ptr 进行管理。

auto b = new Bar;
auto sptr = b->shared_from_this();

在我的环境下(gcc 7.5.0)上面的代码执行的时候会直接 coredump,而不是返回指向 nullptr 的 shared_ptr:

terminate called after throwing an instance of 'std::bad_weak_ptr'
 what():  bad_weak_ptr

小结

智能指针,本质上是对资源所有权和生命周期管理的抽象:

  1. 当资源是被独占时,使用 std::unique_ptr 对资源进行管理。
  2. 当资源会被共享时,使用 std::shared_ptr 对资源进行管理。
  3. 使用 std::weak_ptr 作为 std::shared_ptr 管理对象的观察者。
  4. 通过继承 std::enable_shared_from_this 来获取 this 的 std::shared_ptr 对象。

参考资料

  1. Back to Basics: Smart Pointers
  2. unique_ptr
  3. shared_ptr
  4. weak_ptr
  5. enable_shared_from_this

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • LevelDB 完全解析(0):基本原理和整体架构

    之前零零散散写过几篇和 LSM-Tree、LevelDB 有关的文章。之后也看了一些代码和论文,笔记也做了一些,但大都比较零乱、随意,没花功夫整理。

    linjinhe
  • 设计数据密集型应用(3):Storage and Retrieval

    Hash Index 是一种相对简单的索引结构。几乎每一种程序设计语言都有提供内存数据结构 hash map/table 的标准库,比如 C++ 中的 std:...

    linjinhe
  • Go语言:入门

    C++的代码的组织,依赖的管理规定几乎为零。学习golang的时候,一上来就是看语法,看代码,在代码组织和依赖管理这里碰了不少壁,所以重新看了一下官方文档,并做...

    linjinhe
  • [Effective Modern C++(11&14)]Chapter 4: Smart Pointers

    昊楠Hacking
  • 【C++】智能指针:shared_ptr

    shared_ptr的产生与unique_ptr类似,都是为了解决raw pointer的new和delete的成对使用,导致的野指针、内存泄漏、重复释放内存等...

    灰子学技术
  • Effective C++条款13 C++基本功之智能指针

    最早的智能指针是std::auto_ptr,到c++11才开始广泛使用,平时用得最多的是这三个:

    ACM算法日常
  • C++核心准则编译边学-F.27 使用shared_ptr<T>共享所有权

    Using std::shared_ptr is the standard way to represent shared ownership. That is...

    面向对象思考
  • 令人头疼的编程命名问题你如何面对?

    你写代码时最头疼的是什么,算法?逻辑?还是框架技术?我个人感觉最头疼的一直都是变量命名,今天来聊聊这个话题。欢迎加入微信圈子程序员交流圈 交流编程经验,欢迎投稿...

    码农小胖哥
  • POWER BI系统使用之数据集构建器

    昨天周六,下午回学校有种是周日的错觉,以至于觉得今天是多出来的休息日,开心~hahaha~ 今天要写的内容是临时想到的,原计划写的文我就不立f...

    石璞东
  • Kmeans聚类代码实现及优化

    云豆贴心提醒,本文阅读时间6分钟 这篇文章直接给出上次关于Kmeans聚类的篮球远动员数据分析案例,最后介绍Matplotlib包绘图的优化知识。 希望这篇文...

    小小科

扫码关注云+社区

领取腾讯云代金券