前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >上个厕所的功夫,就学会了“快速排序”算法

上个厕所的功夫,就学会了“快速排序”算法

作者头像
陈哈哈
发布2020-07-03 17:09:23
6870
发布2020-07-03 17:09:23
举报
文章被收录于专栏:MySQL入坑记MySQL入坑记

快速排序由于排序效率在同为O(N*logN)的几种排序方法中效率较高,因此经常被采用,再加上快速排序思想----分治法也确实实用,因此很多软件公司的笔试面试,包括像BAT、字节、美团等知名IT公司都喜欢考查快速排序原理和手写源码。

目录

一、概念

二、基本思想

空间复杂度

时间复杂度

三、算法步骤

四、具体示例

五、快排代码

@java代码

@python代码

六、总结


一、概念

快速排序,顾名思义就是一种以效率快为特色的排序算法,快速排序(Quicksort)是对冒泡排序的一种改进。由英国计算机专家:托尼·霍尔(Tony Hoare)在1960年提出。

二、基本思想

从排序数组中找出一个数,可以随机取,也可以取固定位置,一般是取第一个或最后一个,称为基准数。然后将比基准小的排在左边,比基准大的放到右边;

如何放置呢,就是和基准数进行交换,交换完左边都是比基准小的,右边都是比较基准大的,这样就将一个数组分成了两个子数组,然后再按照同样的方法把子数组再分成更小的子数组,直到不能分解(子数组只有一个值)为止。以此达到整个数据变成有序序列。

快速排序采用了一种分治的策略,通常称其为分治法(Divide-and-ConquerMethod),现在各种语言中自带的排序库很多使用的都是快速排序。

空间复杂度

快速排序是一种原地排序,只需要一个很小的栈作为辅助空间,空间复杂度为O(log2n),所以适合在数据集比较大的时候使用。

时间复杂度

时间复杂度比较复杂,最好的情况是O(n),最差的情况是O(n2),所以平时说的O(nlogn),为其平均时间复杂度。

  • O(n):理想的情况,每次划分所选择的中间数恰好将当前序列几乎等分,经过log2n趟划分,便可得到长度为1的子表。这样,整个算法的时间复杂度为O(nlog2n)。
  • O(n2):最坏的情况,每次所选的中间数是当前序列中的最大或最小元素,这使得每次划分所得的子表中一个为空表,另一子表的长度为原表的长度-1。这样,长度为n的数据表的快速排序需要经过n趟划分,使得整个排序算法的时间复杂度为O(n2)。

三、算法步骤

1.选定一个基准数(一般取第一位数字)作为中心点(Pivot); 2.将大于Pivot的数字放到Pivot的左边; 3.将小于Pivot的数字放到Pivot的右边; 4.第一次排序结束后,分别对左右子序列继续递归重复前三步操作。

四、具体示例

实例数组:arr[] = {19,97,9,17,1,8};

1.取出基准数Pivot,以该值为中心轴。

快速排序中的规则:右边有坑,就从左边Arr[L + n]取值来填,反之左边有坑,则从右边Arr[R - n]取值来填;

2.从左边取的基准值,左边的Arr[L]就空出来了,则先从右侧取值来填,从最右侧下标开始,在Arr[R] 取到第一个值“8”;

3.将取到的Arr[R]与基准值比较,发现小于基准值,则插入到Arr[R],占到了基准值Pivot的位置上。

4.然后从Arr[L+1]的位置取出值,继续向右匹配并排序,将匹配到的值(匹配规则如下)插入到右侧Arr[R]的空位置上;

匹配规则:大于基准值的插入到Arr[R],如果小于,则直接忽略并跳过,继续向右取值,直到坐标L和坐标R重合。

5.发现取出的值大于Pivot(基准值),则将其插入到Arr[R]。

6.左边有坑,从右边Arr[R-1]继续匹配,Arr[R-1] = 1,小于基准值,则插入到Arr[L]的坑中;

7.右边有坑了,继续从左边取值继续匹配,则取到Arr[L+1] = 9,小于基准值,则忽略并跳过,继续找Arr[L + 1]继续匹配。

8.继续从左边坐标 + 1 取值继续匹配,则取到Arr[L] = 17,又小于基准值,则忽略并跳过,继续找Arr[L + 1]继续匹配。

9.最后L坐标和R坐标重合了,将Pivot基准值填入

10.至此,快速排序第一轮完整流程结束,分出了左右子序列,左边都是小于Pivot基准值的,右边都是大于Pivot基准值的。

11.继续对左、右子序列递归进行处理,一直缩小到左、右都是一个值,则快速排序结束,最终得出顺序数组{1,8,9,17,19,97};中间递归流程这里不再赘述。

五、快排代码

@java代码

package com.softsec.demo;

/**
 * Created with IDEA
 *
 * @Author Chensj
 * @Date 2020/5/17 19:04
 * @Description
 * @Version 1.0
 */
public class quickSortDemo {

    public static void main(String[] args) {
        // 创建测试数组
        int[] arr = new int[]{19,97,9,17,1,8};
        System.out.println("排序前:");
        showArray(arr); // 打印数组
        // 调用快排接口
        quickSort(arr);
        System.out.println("\n" + "排序后:");
        showArray(arr);// 打印数组
    }

    /**
     * 快速排序
     * @param array
     */
    public static void quickSort(int[] array) {
        int len;
        if(array == null
                || (len = array.length) == 0
                || len == 1) {
            return ;
        }
        sort(array, 0, len - 1);
    }

    /**
     * 快排核心算法,递归实现
     * @param array
     * @param left
     * @param right
     */
    public static void sort(int[] array, int left, int right) {
        if(left > right) {
            return;
        }
        // base中存放基准数
        int base = array[left];
        int i = left, j = right;
        while(i != j) {
            // 顺序很重要,先从右边开始往左找,直到找到比base值小的数
            while(array[j] >= base && i < j) {
                j--;
            }

            // 再从左往右边找,直到找到比base值大的数
            while(array[i] <= base && i < j) {
                i++;
            }

            // 上面的循环结束表示找到了位置或者(i>=j)了,交换两个数在数组中的位置
            if(i < j) {
                int tmp = array[i];
                array[i] = array[j];
                array[j] = tmp;
            }
        }

        // 将基准数放到中间的位置(基准数归位)
        array[left] = array[i];
        array[i] = base;

        // 递归,继续向基准的左右两边执行和上面同样的操作
        // i的索引处为上面已确定好的基准值的位置,无需再处理
        sort(array, left, i - 1);
        sort(array, i + 1, right);
    }

    /**
     * 数组打印
     * @param num
     */
    private static void showArray(int[] num) {
        for (int i = 0; i < num.length; i++) {
            System.out.print(num[i] + " ");
        }
    }
}

返回结果:

排序前:
19 97 9 17 1 8 
排序后:
1 8 9 17 19 97 
Process finished with exit code 0

@python代码

#快速排序 传入列表、开始位置和结束位置
def quick_sort( li , start , end ):
    # 如果start和end碰头了,说明要我排的这个子数列就剩下一个数了,就不用排序了
    if not start < end :
        return

    mid = li[start] #拿出第一个数当作基准数mid
    low = start   #low来标记左侧从基准数始找比mid大的数的位置
    high = end  #high来标记右侧end向左找比mid小的数的位置

    # 我们要进行循环,只要low和high没有碰头就一直进行,当low和high相等说明碰头了
    while low < high :
        #从high开始向左,找到第一个比mid小或者等于mid的数,标记位置,(如果high的数比mid大,我们就左移high)
        # 并且我们要确定找到之前,如果low和high碰头了,也不找了
        while low < high and li[high] > mid :
            high -= 1
        #跳出while后,high所在的下标就是找到的右侧比mid小的数
        #把找到的数放到左侧的空位 low 标记了这个空位
        li[low] = li[high]
        # 从low开始向右,找到第一个比mid大的数,标记位置,(如果low的数小于等于mid,我们就右移low)
        # 并且我们要确定找到之前,如果low和high碰头了,也不找了
        while low < high and li[low] <= mid :
            low += 1
        #跳出while循环后low所在的下标就是左侧比mid大的数所在位置
        # 我们把找到的数放在右侧空位上,high标记了这个空位
        li[high] = li[low]
        #以上我们完成了一次 从右侧找到一个小数移到左侧,从左侧找到一个大数移动到右侧
    #当这个while跳出来之后相当于low和high碰头了,我们把mid所在位置放在这个空位
    li[low] = mid
    #这个时候mid左侧看的数都比mid小,mid右侧的数都比mid大

    #然后我们对mid左侧所有数进行上述的排序
    quick_sort( li , start, low-1 )
    #我们mid右侧所有数进行上述排序
    quick_sort( li , low +1 , end )
 

#入口函数
if __name__ == '__main__':
    li = [19,97,9,17,1,8]
    quick_sort(li , 0 , len(li) -1 )
    print(li)

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2020-05-17 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、概念
  • 二、基本思想
    • 空间复杂度
      • 时间复杂度
      • 三、算法步骤
      • 四、具体示例
      • 五、快排代码
        • @java代码
          • @python代码
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档