我在 分布式高可用的ZooKeeper集群搭建与基本操作 提到,zk的关键字是分布式协调,其可扩展
、可靠性
、时序性
以及快速保证了zk的高性能。
一个zk集群有leader
,follower
,这个我们已经知道了,其实zk集群中还有个Observer
的角色。
在zoo.cfg中这样配置:
server.1=zknode1:2888:3888
server.2=zknode2:2888:3888
server.3=zknode3:2888:3888
server.4=zknode4:2888:3888:observer
那么server.4的角色就是observer。
zk集群中leader负责写入数据,client读取数据只从follower
读取,所以zk是读写分离的。这个observer
也负责提供查询(读取),可以理解为它比follwer
级别更低一些,当leader挂了的时候,leader参与选举投票,而observer不参与投票(和投票相关的能力均没有)。observer放大查询能力!
想要对外提供高性能可靠的服务,zk集群内部必定有一套快速恢复leader的机制。我之前实际操作过,当leader挂了的时候,zk集群迅速就选出了新的leader。官方说200ms之内能够快速恢复leader。
在zk集群恢复leader(投票选举)的过程中,节点是不对外提供服务的!目的是保证数据最终一致性!
注:前方高能!读完你就理解paxos算法了! 参考:https://www.douban.com/note/208430424/
Paxos,它是一个基于消息传递的一致性算法。Paxos只有在一个可信的计算环境中才能成立,这个环境是不会被入侵所破坏的。(不考虑网络的不稳定性、黑客攻击等因素)
Paxos描述了这样一个场景,有一个叫做Paxos的小岛(Island)上面住了一批居民,岛上面所有的事情由一些特殊的人决定,他们叫做议员(Senator)。议员的总数(Senator Count)是确定的,不能更改。岛上每次环境事务的变更都需要通过一个提议(Proposal),每个提议都有一个编号(PID),这个编号是一直增长的,不能倒退。每个提议都需要超过半数((Senator Count)/2 +1)的议员同意才能生效。每个议员只会同意大于当前编号的提议,包括已生效的和未生效的。如果议员收到小于等于当前编号的提议,他会拒绝,并告知对方:你的提议已经有人提过了。这里的当前编号是每个议员在自己记事本上面记录的编号,他不断更新这个编号。整个议会不能保证所有议员记事本上的编号总是相同的。现在议会有一个目标:保证所有的议员对于提议都能达成一致的看法。
好,现在议会开始运作,所有议员一开始记事本上面记录的编号都是0。有一个议员发了一个提议:将电费设定为1元/度。他首先看了一下记事本,嗯,当前提议编号是0,那么我的这个提议的编号就是1,于是他给所有议员发消息:1号提议,设定电费1元/度。其他议员收到消息以后查了一下记事本,哦,当前提议编号是0,这个提议可接受,于是他记录下这个提议并回复:我接受你的1号提议,同时他在记事本上记录:当前提议编号为1。发起提议的议员收到了超过半数的回复,立即给所有人发通知:1号提议生效!收到的议员会修改他的记事本,将1好提议由记录改成正式的法令,当有人问他电费为多少时,他会查看法令并告诉对方:1元/度。
现在看冲突的解决:假设总共有三个议员S1-S3,S1和S2同时发起了一个提议:1号提议,设定电费。S1想设为1元/度, S2想设为2元/度。结果S3先收到了S1的提议,于是他做了和前面同样的操作。紧接着他又收到了S2的提议,结果他一查记事本,咦,这个提议的编号小于等于我的当前编号1,于是他拒绝了这个提议:对不起,这个提议先前提过了。于是S2的提议被拒绝,S1正式发布了提议: 1号提议生效。S2向S1或者S3打听并更新了1号法令的内容,然后他可以选择继续发起2号提议。
好,我觉得Paxos的精华就这么多内容。现在让我们来对号入座,看看在ZK Server里面Paxos是如何得以贯彻实施的。
小岛(Island)——ZK Server Cluster
议员(Senator)——ZK Server
提议(Proposal)——ZNode Change(Create/Delete/SetData…)
提议编号(PID)——Zxid(ZooKeeper Transaction Id)
正式法令——所有ZNode及其数据
貌似关键的概念都能一一对应上,但是等一下,Paxos岛上的议员应该是人人平等的吧,而ZK Server好像有一个Leader的概念。没错,其实Leader的概念也应该属于Paxos范畴的。如果议员人人平等,在某种情况下会由于提议的冲突而产生一个“活锁”(所谓活锁我的理解是大家都没有死,都在动,但是一直解决不了冲突问题)。Paxos的作者Lamport在他的文章”The Part-Time Parliament“中阐述了这个问题并给出了解决方案——在所有议员中设立一个总统,只有总统有权发出提议,如果议员有自己的提议,必须发给总统并由总统来提出。好,我们又多了一个角色:总统。
总统——ZK Server Leader
现在我们假设总统已经选好了,下面看看ZK Server是怎么实施的。
情况一:
屁民甲(Client)到某个议员(ZK Server)那里询问(Get)某条法令的情况(ZNode的数据),议员毫不犹豫的拿出他的记事本(local storage),查阅法令并告诉他结果,同时声明:我的数据不一定是最新的。你想要最新的数据?没问题,等着,等我找总统Sync一下再告诉你。
情况二:
屁民乙(Client)到某个议员(ZK Server)那里要求政府归还欠他的一万元钱,议员让他在办公室等着,自己将问题反映给了总统,总统询问所有议员的意见,多数议员表示欠屁民的钱一定要还,于是总统发表声明,从国库中拿出一万元还债,国库总资产由100万变成99万。屁民乙拿到钱回去了(Client函数返回)。
情况三:
总统突然挂了,议员接二连三的发现联系不上总统,于是各自发表声明,推选新的总统,总统大选期间政府停业,拒绝屁民的请求。
当然还有很多其他的情况,但这些情况总是能在Paxos的算法中找到原型并加以解决。这也正是我们认为Paxos是Zookeeper的灵魂的原因。当然ZK Server还有很多属于自己特性的东西:Session, Watcher,Version等。
就是Zookeeper Atomic Broadcast-zookeeper原子广播协议。
原子:只有成功、失败,没有中间状态;
广播:分布式、多节点的。
ZooKeeper消息广播
ZAB 协议的消息广播过程使用的是一个原子广播协议,类似一个 二阶段提交过程(2pc)。
对于客户端发送的写请求,全部由 Leader 接收,Leader 将请求封装成一个事务 Proposal,将其发送给所有 Follwer ,然后,根据所有 Follwer 的反馈,如果超过半数成功响应,则执行 commit 操作(先提交自己,再发送 commit 给所有 Follwer)。
这其中包含一些细节:
1、Leader 在收到客户端请求之后,会将这个请求封装成一个事务,并给这个事务分配一个全局递增的唯一 ID,称为事务ID(ZXID),ZAB协议需要保证事务的顺序,因此必须将每一个事务按照 ZXID 进行先后排序然后处理。
2、在 Leader 和 Follwer 之间还有一个消息队列,用来解耦他们之间的耦合,解除同步阻塞。
3、zookeeper集群中为保证任何所有进程能够有序的顺序执行,只能是 Leader 服务器接受写请求,即使是 Follower 服务器接受到客户端的请求,也会转发到 Leader 服务器进行处理。
那么问题来了,如果leader挂了呢?
leader只有一个,那么就会存在单点故障问题,这时还能保证数据一致性吗?
ZAB协议规定:
对此,如果让 Leader 选举算法能够保证新选举出来的 Leader 服务器拥有集群总所有机器编号(即 ZXID 最大)的事务,那么就能够保证这个新选举出来的 Leader 一定具有所有已经提交的提案。
另外,如果有多台zk server的Zxid相同都是最大,那么选举myid最大的。
即:
END
看完点赞,养成习惯。 举手之劳,赞有余香。