前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Java程序员面试之HashMap

Java程序员面试之HashMap

作者头像
Rookie
发布2021-01-05 09:52:00
2850
发布2021-01-05 09:52:00
举报
文章被收录于专栏:成猿之路成猿之路
介绍

JAVA中的基础HashMap在工作中使用的频率极高。相信很多同学在平时面试的时候经常被问到晕,今天我们来聊一下HashMap中常见的面试题吧!

常见面试题

1、 JavaJDK1.7到1.8HashMap做了那些优化?

java1.7中HashMap是由数组+链表组成的。1.8之后加了红黑树。

当链表大于8并且容量超过64时。链表就会变成红黑树。

如图所示:

数组中的元素就是我们平时说的(bucket)哈希桶,代码如下:

static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    V value;
    Node<K,V> next;
    Node(int hash, K key, V value, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }
    public final K getKey()        { return key; }
    public final V getValue()      { return value; }
    public final String toString() { return key + "=" + value; }
    public final int hashCode() {
        return Objects.hashCode(key) ^ Objects.hashCode(value);
    }
    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }
    public final boolean equals(Object o) {
        if (o == this)
            return true;
        if (o instanceof Map.Entry) {
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
            if (Objects.equals(key, e.getKey()) &&
                Objects.equals(value, e.getValue()))
                return true;
        }
        return false;
    }
}

每个哈希桶(bucket)中包含了四个字段:hash、key、value、next,其中 next 表示链表的下一个节点。JDK 1.8 添加红黑树是因为一旦链表过长,会严重影响 HashMap 的性能,而红黑树的优点就是快速增删改查,这样就可以有效的解决链表过长时操作比较慢的问题。

2、HashMap线程安全吗?HashTabel为什么线程安全?

HashMap是线程不安全的,而Hashtable是线程安全的,因为它的所有CRUD操作都被synchronized修饰,这种实现是十分缓慢的。Hashtable不允许出现key和值为null,但是HashMap允许。

为什么HashMap线程不安全?接下来我用代码给大家演示下情况:

1、出现并发修改异常: ConcurrentModificationException。

2、导致原因: 并发情况下HashMap不安全。

3、解决方案:使用JUC(java.util.concurrent)包中的ConcurrentHashMap。

Map<String,String> map = new ConcurrentHashMap<>();

3、HashMap源码分析

HashMap中有这些属性:

// HashMap 初始化长度
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
// HashMap 最大长度
static final int MAXIMUM_CAPACITY = 1 << 30; // 1073741824
// 默认的加载因子 (扩容因子)
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 当链表长度大于此值且容量大于 64 时
static final int TREEIFY_THRESHOLD = 8;
// 转换链表的临界值,当元素小于此值时,会将红黑树结构转换成链表结构
static final int UNTREEIFY_THRESHOLD = 6;
// 最小树容量
static final int MIN_TREEIFY_CAPACITY =

加载因子是什么?为什么默认的加载因子是0.75?

加载因子也叫扩容因子或负载因子,用来判断什么时候进行扩容的,假如加载因子是 0.6,HashMap 的初始化容量是 20,那么当 HashMap 中有 20*0.6=12 个元素时,HashMap 就会进行扩容。

为什么是0.75是因为官方说是处于性能的考虑所以默认设置成0.75。

HashMap中有三个重要的方法:新增,查询,扩容

新增源码如下:

public V put(K key, V value) {
    // 对 key 进行哈希操作
    return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // 哈希表为空则创建表
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // 根据 key 的哈希值计算出要插入的数组索引 i
    if ((p = tab[i = (n - 1) & hash]) == null)
        // 如果 table[i] 等于 null,则直接插入
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        // 如果 key 已经存在了,直接覆盖 value
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        // 如果 key 不存在,判断是否为红黑树
        else if (p instanceof TreeNode)
            // 红黑树直接插入键值对
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            // 为链表结构,循环准备插入
            for (int binCount = 0; ; ++binCount) {
                // 下一个元素为空时
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    // 转换为红黑树进行处理
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                //  key 已经存在直接覆盖 value
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    // 超过最大容量,扩容
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

如果看代码有些不理解看下面的流程图 :

查询源码如下:
public V get(Object key) {
    Node<K,V> e;
    // 对 key 进行哈希操作
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    // 非空判断
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        // 判断第一个元素是否是要查询的元素
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        // 下一个节点非空判断
        if ((e = first.next) != null) {
            // 如果第一节点是树结构,则使用 getTreeNode 直接获取相应的数据
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            do { // 非树结构,循环节点判断
                // hash 相等并且 key 相同,则返回此节点
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

扩容源码如下:

final Node<K,V>[] resize() {
    // 扩容前的数组
    Node<K,V>[] oldTab = table;
    // 扩容前的数组的大小和阈值
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    // 预定义新数组的大小和阈值
    int newCap, newThr = 0;
    if (oldCap > 0) {
        // 超过最大值就不再扩容了
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        // 扩大容量为当前容量的两倍,但不能超过 MAXIMUM_CAPACITY
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    // 当前数组没有数据,使用初始化的值
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {             
      // zero initial threshold signifies using defaults
        // 如果初始化的值为 0,则使用默认的初始化容量
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    // 如果新的容量等于 0
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr; 
    @SuppressWarnings({"rawtypes","unchecked"})
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    // 开始扩容,将新的容量赋值给 table
    table = newTab;
    // 原数据不为空,将原数据复制到新 table 中
    if (oldTab != null) {
        // 根据容量循环数组,复制非空元素到新 table
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                // 如果链表只有一个,则进行直接赋值
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    // 红黑树相关的操作
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    // 链表复制,JDK 1.8 扩容优化部分
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        // 原索引
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        // 原索引 + oldCap
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 将原索引放到哈希桶中
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    // 将原索引 + oldCap 放到哈希桶中
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}
4. HashMap死循环分析

以 JDK 1.7 为例,假设 HashMap 默认大小为 2,原本 HashMap 中有一个元素 key(5),我们再使用两个线程:t1 添加元素 key(3),t2 添加元素 key(7),当元素 key(3) 和 key(7) 都添加到 HashMap 中之后,线程 t1 在执行到 Entry<K,V> next = e.next; 时,交出了 CPU 的使用权,源码如下:

源码如下:

void transfer(Entry[] newTable, boolean rehash) {

    int newCapacity = newTable.length;

    for (Entry<K,V> e : table) {

        while(null != e) {

            Entry<K,V> next = e.next; // 线程一执行此处

            if (rehash) {

                e.hash = null == e.key ? 0 : hash(e.key);

            }

            int i = indexFor(e.hash, newCapacity);

            e.next = newTable[i];

            newTable[i] = e;

            e = next;

        }

    }

}

那么此时线程 t1 中的 e 指向了 key(3),而 next 指向了 key(7) ;之后线程 t2 重新 rehash 之后链表的顺序被反转,链表的位置变成了 key(5) → key(7) → key(3),其中 “→” 用来表示下一个元素。

当 t1 重新获得执行权之后,先执行 newTalbe[i] = e 把 key(3) 的 next 设置为 key(7),而下次循环时查询到 key(7) 的 next 元素为 key(3),于是就形成了 key(3) 和 key(7) 的循环引用,因此就导致了死循环的发生,如下图所示:

发生死循环的原因是 JDK 1.7 链表插入方式为首部倒序插入,这个问题在 JDK 1.8 得到了改善,变成了尾部正序插入。

有人曾经把这个问题反馈给了 Sun 公司,但 Sun 公司认为这不是一个问题,因为 HashMap 本身就是非线程安全的,如果要在多线程下,建议使用 ConcurrentHashMap 替代,但这个问题在面试中被问到的几率依然很大,所以在这里需要特别说明一下。

总结

以上就是常见的HashMap常见面试题。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2020-12-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 成猿之路 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 常见面试题
    • 查询源码如下:
      • 4. HashMap死循环分析
      • 总结
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档