首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >电子产品如何使用IAP方式升级程序

电子产品如何使用IAP方式升级程序

作者头像
不脱发的程序猿
发布2021-01-20 11:35:53
7780
发布2021-01-20 11:35:53
举报

目录

1、ICP、ISP和IAP的概念

2、IAP升级程序的原理

3、IAP升级程序的流程

4、IAR环境下IAP的实现

4.1、BootLoader程序设计

4.2、User Application程序设计

4.3、IAR地址配置及文件输出

5、拓展:解析HEX文件


1、ICP、ISP和IAP的概念

在项目开发过程中通常使用SWD、JTAG等工具进行程序烧录和仿真,若产品节点较少还是比较方便,但是当设备节点量产时,就需要使用IAP的方式进行程序烧录。

简单说明几个概念ICP、ISP和IAP。

ICP In-circuit programmer

ICP:在电路编程,MCU内部不需要有程序,上电就能够对程序存储区域进行编程,例如平时使用JTAG、SWD等方式。

ISP In-system programer

ISP:在系统编程,通过MCU专用的串行编程接口进行编程,MCU需要具有运行的外部条件,例如有晶振等。

例如STM32通过设置BOOT引脚设置对应启动模式,然后通过串口等对内部Flash进行升级,可以说这种方式就是厂家在芯片内部固化了一个BootLoader程序。

IAP In-application programer

IAP:在应用编程,开发者设计BootLoader程序,通过串口、CAN、以太网等通信方式实现程序升级。

2、IAP升级程序的原理

通常一块MCU芯片的Code(代码)区内只有一个用户程序,而IAP方案则是将代码区划分为两部分,两部分区域各存放一个程序,一个为BootLoader(引导加载程序),另一个为User Application(用户应用程序)。

BootLoader在出厂时就固定下来了,在需要变更User Application时只需要通过触发BootLoader对User Application的擦除和重新写入即可完成用户应用的更换。

程序执行初始化后首先会进入BootLoader,在BootLoader里面检测条件是否被触发(可通过按键是否被按下、串口是否接收到特定的数据、U盘是否插入等),如果有则进行对User Application进行擦除和重新写入操作新程序,如果没有则直接跳转到BootLoader执行User Application。

3、IAP升级程序的流程

假设设备仅有User Application,以STM32F103ZET6为例,其启动方式有三种:内置FLASH启动、内置SRAM启动、系统存储器ROM启动。通过BOOT0和BOOT1引脚的设置可以选择从哪中方式启动,这里选择内置的FLASH启动,STM32F103ZET6 FLASH的地址为0x08000000—0x0807FFFF,共512KB。

通常STM32发生中断的过程为以下五步:

1、发生中断(中断请求);

2、到中断向量表查找中断函数入口地址;

3、跳转到中断函数;

4、执行中断函数;

5、中断返回。

也就是说,STM32的内置的Flash中有一个中断向量表来存放各个中断服务函数的入口地址,内置Flash的分配情况如下图所示:

所以当只有一个程序的情况下(仅有User Applicatio时),程序执行的走向如下所示:

解析上图:

STM32F103ZET6有一个中断向量表,这个中断向量表存放在代码开始部分的后4个字节处(即0x08000004),代码开始的4个字节存放的是堆栈栈顶的地址,当发生中断后程序通过查找该表得到相应的中断服务程序入口地址,然后再跳到相应的中断服务程序中执行。

设备上电后从0x08000004处取出复位中断向量的地址,然后跳转到复位中断程序的入口(标号①所示),执行结束后跳转到main函数中(标号②所示)。在执行main函数的过程中发生中断,则STM32强制将PC指针指回中断向量表处(标号③所示),从中断向量表中找到相应的中断函数入口地址,跳转到相应的中断服务函数(标号④所示),执行完中断函数后再返回到main函数中来(标号⑤所示)。

下面要讲正题了。

若将STM32F103ZET6在内置的Flash里面添加User Application和BootLoader程序,则Flash分配情况大致如下图所示:

此时,User Application和BootLoader程序各有一个中断向量表,假设BootLoader程序占用的空间为N+M字节,则程序的走向应该如下图所示:

解析上图:

设备上电初始程序依然从0x08000004处取出复位中断向量地址,执行复位中断函数后跳转到IAP的main(标号①所示),在IAP的main函数执行完成后(在BootLoader里面检测条件是否被触发(可通过按键是否被按下、串口是否接收到特定的数据、U盘是否插入等),如果有则进行对User Application进行擦除和重新写入操作新程序,如果没有则直接跳转到BootLoader执行User Application)强制跳转到0x08000004+N+M处(标号②所示),最后跳转到新的main函数中来(标号③所示),当发生中断请求后,程序跳转到新的中断向量表中取出新的中断函数入口地址,再跳转到新的中断服务函数中执行(标号④⑤所示),执行完中断函数后再返回到main函数中来(标号⑥所示)。

4、IAR环境下IAP的实现

以IAR环境为例,简单讲述IAP的实现步骤。这里MCU以华大HC32L130为例,因为使用的MCU不同,所以实现的细节也不一致,但是基本上官方都会提供Demo例程。

本示例Flash分配情况为:BootLoader地址:0x00000000~0x00000DFF,User Application地址:0x00001000~0x0000FFFF。

4.1、BootLoader程序设计

第1步:设计总体架构,包含三个功能函数:检测BootLoader标志程序、IAP配置程序和IAP烧录功能程序。

/**
 *******************************************************************************
 ** \brief  IAP 主函数
 **
 ** \param  None
 **
 ** \retval int32_t Return value, if needed
 **
 ******************************************************************************/
int32_t main(void)
{
    IAP_UpdateCheck();
    IAP_Init();
    IAP_Main();
}

第2步:检查BootPara标记区数据值,判断是否需要升级APP程序,若需要升级则才会执行IAP_Init()和IAP_Main()函数,否则会直接跳转到User Application程序。

/**
 *******************************************************************************
 ** \brief  检查BootPara标记区数据值,判断是否需要升级APP程序.
 **
 ** \param  None
 **
 ** \retval None
 **
 ******************************************************************************/
void IAP_UpdateCheck(void)
{
    uint32_t u32AppFlag;
    
    u32AppFlag = *(__IO uint32_t *)BOOT_PARA_ADDRESS; //读出BootLoader para区标记值
    if (APP_FLAG != u32AppFlag)                       //如果标记值不等于APP_FLAG,表示不需要升级APP程序
    {
        IAP_JumpToApp(APP_ADDRESS);                   //则直接跳转至APP
    }    
}

第3步:IAP_Init()函数的实现,主要包括外围模块初始化和IAP通信协议标志初始化。

/**
 *******************************************************************************
 ** \brief  IAP 初始化
 **
 ** \param  [in] None
 **
 ** \retval None
 **
 ******************************************************************************/
void IAP_Init(void)
{
    PreiModule_Init();
    Modem_RamInit();
}

/**
 *******************************************************************************
 ** \brief CPU外围模块初始化
 **
 ** \param [in] None
 **
 ** \retval None
 **
 ******************************************************************************/
void PreiModule_Init(void)
{
    HC32_SetSystemClockToRCH22_12MHz();
    HC32_InitUart();
    HC32_InitCRC();
    HC32_InitTIM();
    HC32_InitFlash(FLASH_CONFIG_FREQ_22_12MHZ);
}

/**
 *******************************************************************************
 ** \brief modem文件中相关变量参数初始化
 **
 ** \param [out] None
 ** \param [in]  None
 **
 ** \retval None
 **
 ******************************************************************************/
void Modem_RamInit(void)
{    
    uint32_t i;
    
    enFrameRecvStatus = FRAME_RECV_IDLE_STATUS;                         //帧状态初始化为空闲状态
    
    for (i=0; i<FRAME_MAX_SIZE; i++)
    {
        u8FrameData[i] = 0;                                             //帧数据缓存初始化为零
    }
    
    u32FrameDataIndex = 0;                                              //帧缓存数组索引值初始化为零
}

第4步:IAP_Main()函数的实现,主要包含对User Application程序更新处理。

/**
 *******************************************************************************
 ** \brief  IAP APP程序升级主函数.
 **
 ** \param  None
 **
 ** \retval None
 **
 ******************************************************************************/
void IAP_Main(void)
{
    en_result_t enRet;

    while (1)
    {
        enRet = Modem_Process();                       //APP程序更新处理
        
        if (Ok == enRet)
        {
            IAP_ResetConfig();                         //复位所有外设模块
            if (Error == IAP_JumpToApp(APP_ADDRESS))   //如果跳转失败
            {
                while(1);
            }
        }
    }
}

/**
 *******************************************************************************
 ** \brief 上位机数据帧解析及处理
 **
 ** \param [in] None             
 **
 ** \retval Ok                          APP程序升级完成,并接受到跳转至APP命令
 ** \retval OperationInProgress         数据处理中
 ** \retval Error                       通讯错误
 **
 ******************************************************************************/
en_result_t Modem_Process(void)
{
    uint8_t  u8Cmd, u8FlashAddrValid, u8Cnt, u8Ret;
    uint16_t u16DataLength, u16PageNum, u16Ret;
    uint32_t u32FlashAddr, u32FlashLength, u32Temp;
    
    if (enFrameRecvStatus == FRAME_RECV_PROC_STATUS)                //有数据帧待处理, enFrameRecvStatus值在串口中断中调整
    {
        u8Cmd = u8FrameData[PACKET_CMD_INDEX];                      //获取帧指令码
        if (PACKET_CMD_TYPE_DATA == u8FrameData[PACKET_TYPE_INDEX]) //如果是数据指令
        {
            u8FlashAddrValid = 0u;
            
            u32FlashAddr = u8FrameData[PACKET_ADDRESS_INDEX] +      //读取地址值
                           (u8FrameData[PACKET_ADDRESS_INDEX + 1] << 8)  +
                           (u8FrameData[PACKET_ADDRESS_INDEX + 2] << 16) +
                           (u8FrameData[PACKET_ADDRESS_INDEX + 3] << 24);
            if ((u32FlashAddr >= (FLASH_BASE + BOOT_SIZE)) && (u32FlashAddr < (FLASH_BASE + FLASH_SIZE)))  //如果地址值在有效范围内
            {
                u8FlashAddrValid = 1u;                              //标记地址有效
            }
        }
        
        switch (u8Cmd)                                              //根据指令码跳转执行
        {
            case  PACKET_CMD_HANDSHAKE    :                         //握手帧 指令码
                u8FrameData[PACKET_RESULT_INDEX] = PACKET_ACK_OK;   //返回状态为:正确
                Modem_SendFrame(&u8FrameData[0], PACKET_INSTRUCT_SEGMENT_SIZE);   //发送应答帧给上位机
                break;
            case  PACKET_CMD_ERASE_FLASH  :                         //擦除flash 指令码
                if ((u32FlashAddr % FLASH_SECTOR_SIZE) != 0)        //如果擦除地址不是页首地址
                {
                    u8FlashAddrValid = 0u;                          //标记地址无效
                }

                if (1u == u8FlashAddrValid)                         //如果地址有效
                {
                    u32Temp = u8FrameData[PACKET_DATA_INDEX] +      //获取待擦除flash尺寸
                              (u8FrameData[PACKET_DATA_INDEX + 1] << 8)  +
                              (u8FrameData[PACKET_DATA_INDEX + 2] << 16) +
                              (u8FrameData[PACKET_DATA_INDEX + 3] << 24);
                    u16PageNum = FLASH_PageNumber(u32Temp);          //计算需擦除多少页
                    for (u8Cnt=0; u8Cnt<u16PageNum; u8Cnt++)         //根据需要擦除指定数量的扇区
                    {
                        u8Ret = Flash_EraseSector(u32FlashAddr + (u8Cnt * FLASH_SECTOR_SIZE));
                        if (Ok != u8Ret)                             //如果擦除失败,反馈上位机错误代码
                        {
                            u8FrameData[PACKET_RESULT_INDEX] = PACKET_ACK_ERROR;
                            break;
                        }
                    }
                    if (Ok == u8Ret)                                 //如果全部擦除成功,反馈上位机成功
                    {
                        u8FrameData[PACKET_RESULT_INDEX] = PACKET_ACK_OK;
                    }else                                            //如果擦除失败,反馈上位机错误超时标志
                    {
                        u8FrameData[PACKET_RESULT_INDEX] = PACKET_ACK_TIMEOUT;
                    }
                }
                else                                                 //地址无效,反馈上位机地址错误
                {
                    u8FrameData[PACKET_RESULT_INDEX] = PACKET_ACK_ADDR_ERROR;
                }
                Modem_SendFrame(&u8FrameData[0], PACKET_INSTRUCT_SEGMENT_SIZE);             //发送应答帧到上位机
                break;
            case  PACKET_CMD_APP_DOWNLOAD :                          //数据下载 指令码
                if (1u == u8FlashAddrValid)                          //如果地址有效
                {
                    u16DataLength = u8FrameData[FRAME_LENGTH_INDEX] + (u8FrameData[FRAME_LENGTH_INDEX + 1] << 8)
                                     - PACKET_INSTRUCT_SEGMENT_SIZE; //获取数据包中的数据长度(不包含指令码指令类型等等)
                    if (u16DataLength > PACKET_DATA_SEGMENT_SIZE)    //如果数据长度大于最大长度
                    {
                        u16DataLength = PACKET_DATA_SEGMENT_SIZE;    //设置数据最大值
                    }
                    u8Ret = Flash_WriteBytes(u32FlashAddr, (uint8_t *)&u8FrameData[PACKET_DATA_INDEX], u16DataLength); //把所有数据写入flash
                    if (Ok != u8Ret)                                 //如果写数据失败       
                    {
                        u8FrameData[PACKET_RESULT_INDEX] = PACKET_ACK_ERROR;                //反馈上位机错误 标志
                    }
                    else                                             //如果写数据成功
                    {
                        u8FrameData[PACKET_RESULT_INDEX] = PACKET_ACK_OK;                   //反馈上位机成功 标志
                    }
                }
                else                                                 //如果地址无效
                {
                    u8FrameData[PACKET_RESULT_INDEX] = PACKET_ACK_ADDR_ERROR;               //反馈上位机地址错误
                }
                Modem_SendFrame(&u8FrameData[0], PACKET_INSTRUCT_SEGMENT_SIZE);             //发送应答帧到上位机
                break;
            case  PACKET_CMD_CRC_FLASH    :                          //查询flash校验值 指令码
                if (1u == u8FlashAddrValid)                          //如果地址有效
                {
                    u32FlashLength = u8FrameData[PACKET_DATA_INDEX] +                 
                                    (u8FrameData[PACKET_DATA_INDEX + 1] << 8)  +
                                    (u8FrameData[PACKET_DATA_INDEX + 2] << 16) +
                                    (u8FrameData[PACKET_DATA_INDEX + 3] << 24);             //获取待校验flash大小
                    if ((u32FlashLength + u32FlashAddr) > (FLASH_BASE + FLASH_SIZE))        //如果flash长度超出有效范围
                    {
                        u8FrameData[PACKET_RESULT_INDEX] = PACKET_ACK_FLASH_SIZE_ERROR;     //反馈上位机flash尺寸错误
                    }else
                    {
                        u16Ret = Cal_CRC16(((unsigned char *)u32FlashAddr), u32FlashLength);//读取flash指定区域的值并计算crc值
                        u8FrameData[PACKET_FLASH_CRC_INDEX] = (uint8_t)u16Ret;              //把crc值存储到应答帧
                        u8FrameData[PACKET_FLASH_CRC_INDEX+1] = (uint8_t)(u16Ret>>8);
                        u8FrameData[PACKET_RESULT_INDEX] = PACKET_ACK_OK;                   //反馈上位机成功 标志
                    }
                }
                else                                                                        //如果地址无效
                {
                    u8FrameData[PACKET_RESULT_INDEX] = PACKET_ACK_ADDR_ERROR;               //反馈上位机地址错误
                }
                Modem_SendFrame(&u8FrameData[0], PACKET_INSTRUCT_SEGMENT_SIZE+2);           //发送应答帧到上位机
                break;
            case  PACKET_CMD_JUMP_TO_APP  :                          //跳转至APP 指令码
                Flash_EraseSector(BOOT_PARA_ADDRESS);                //擦除BOOT parameter 扇区
                u8FrameData[PACKET_RESULT_INDEX] = PACKET_ACK_OK;    //反馈上位机成功
                Modem_SendFrame(&u8FrameData[0], PACKET_INSTRUCT_SEGMENT_SIZE);             //发送应答帧到上位机
                return Ok;                                           //APP更新完成,返回OK,接下来执行跳转函数,跳转至APP
            case  PACKET_CMD_APP_UPLOAD   :                          //数据上传
                if (1u == u8FlashAddrValid)                          //如果地址有效
                {
                    u32Temp = u8FrameData[PACKET_DATA_INDEX] +
                              (u8FrameData[PACKET_DATA_INDEX + 1] << 8)  +
                              (u8FrameData[PACKET_DATA_INDEX + 2] << 16) +
                              (u8FrameData[PACKET_DATA_INDEX + 3] << 24);                   //读取上传数据长度
                    if (u32Temp > PACKET_DATA_SEGMENT_SIZE)                                 //如果数据长度大于最大值
                    {
                        u32Temp = PACKET_DATA_SEGMENT_SIZE;                                 //设置数据长度为最大值
                    }
                    Flash_ReadBytes(u32FlashAddr, (uint8_t *)&u8FrameData[PACKET_DATA_INDEX], u32Temp); //读flash数据
                    u8FrameData[PACKET_RESULT_INDEX] = PACKET_ACK_OK;                       //反馈上位机成功 标志
                    Modem_SendFrame(&u8FrameData[0], PACKET_INSTRUCT_SEGMENT_SIZE + u32Temp);//发送应答帧到上位机
                }
                else                                                  //如果地址无效
                {
                    u8FrameData[PACKET_RESULT_INDEX] = PACKET_ACK_ADDR_ERROR;               //反馈上位机地址错误 标志
                    Modem_SendFrame(&u8FrameData[0], PACKET_INSTRUCT_SEGMENT_SIZE);         //发送应答帧到上位机
                }
                break;
            case  PACKET_CMD_START_UPDATE :                           //启动APP更新(此指令正常在APP程序中调用)
                u8FrameData[PACKET_RESULT_INDEX] = PACKET_ACK_OK;     //反馈上位机成功 标志
                Modem_SendFrame(&u8FrameData[0], PACKET_INSTRUCT_SEGMENT_SIZE);             //发送应答帧到上位机
                break;
        }
        enFrameRecvStatus = FRAME_RECV_IDLE_STATUS;                   //帧数据处理完成,帧接收状态恢复到空闲状态
    }
    
    return OperationInProgress;                                       //返回,APP更新中。。。
}

4.2、User Application程序设计

在本示例User Application中,触发BootLoader更新程序的标志在串口接收中实现。

//UART0中断函数
void Uart0_IRQHandler(void)
{
    if(Uart_GetStatus(M0P_UART0, UartRC))         //UART0数据接收
    {
        Uart_ClrStatus(M0P_UART0, UartRC);        //清中断状态位
        u8RxData[u8RxCnt] = Uart_ReceiveData(M0P_UART0);   //接收数据字节
        u8RxCnt++; 
        
        if(u8RxCnt>=18)
        {
            u8RxCnt = 0;
            if ((u8RxData[0]==0x6D)&&(u8RxData[1]==0xAC)&&(u8RxData[6]==0x26)&&(u8RxData[16]==0xA6)&&(u8RxData[17]==0xDA)) //是APP更新帧
            {
                for(uint32_t i=0;i<18;i++)
                {
                    Uart_SendDataPoll(M0P_UART0,u8TxData[i]); //查询方式发送数据
                }
                //boot para区域写标记值,通知BootLoader要更新程序了
                Flash_SectorErase(0xF00);
                Flash_WriteWord(0xF00, 0x12345678);
                
		        NVIC_SystemReset();  //软件复位MCU
            }                    
        }
    }
    
    if(Uart_GetStatus(M0P_UART0, UartTC))         //UART0数据发送
    {
        Uart_ClrStatus(M0P_UART0, UartTC);        //清中断状态位
    }

}

4.3、IAR地址配置及文件输出

最后还需要简答配置下IAR环境。

第1步:确定输出的Linker配置地址,因为需要在这里程序修改地址。

第2步:找到Linker配置文件,修改BootLoader程序地址:0x00000000~0x00000DFF,User Application程序地址:0x00001000~0x0000FFFF。

第3步:找到User Application程序的配置文件(后缀为.s的文件),添加程序中断向量偏移长度:0x00001000,和BootLoader程序配置文件相比有两处不同之处,如下所示:

第4步:将这两个程序按照ICP方式(SWD、JTAG等)烧录后,此后就可以使用IAP方式通过串口烧录HEX文件程序或者BIN文件程序。输出及烧录HEX文件程序或者BIN文件程序方式如下图所示:

5、拓展:解析HEX文件

HEX文件可以通过UltraEdit、Notepad++、记事本等工具打开,用Notepad++打开之后会看到以下数据内容:

使用Notepad++打开后会不同含义的数据其颜色不同。每行数据都会有一个冒号开始,后面的数据由:数据长度、地址、标识符、有效数据、校验数据等构成。以上图的第一行为例,进行解析:

第1个字节10,表示该行具有0x10个数据,即16个字节的数据;

第2、3个字节3E00,表示该行的起始地址为0x3E00;

第4个字节00,表示该行记录的是数据;

第5-20个字节,表示的是有效数据;

第21个字节EB,表示前面数据的校验数据,校验方法:0x100-前面字节累加和

其中,第4个字节具有5种类型:00-05,含义如下:

字段

含义

00

表示后面记录的是数据

01

表示文件结束

02

表示扩展段地址

03

表示开始段地址

04

表示扩展线性地址

05

表示开始线性地址

单片机的hex文件以00居多,都用来表示数据。hex文件的结束部分如下图所示:

最后一行的01表示文件结束了,最后的FF表示校验数据,由0x100-0x01=0xFF得来。


资源下载:IAR环境下STM32+IAP方案的实现

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2020-11-29 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 目录
  • 1、ICP、ISP和IAP的概念
  • 2、IAP升级程序的原理
  • 3、IAP升级程序的流程
  • 4、IAR环境下IAP的实现
    • 4.1、BootLoader程序设计
      • 4.2、User Application程序设计
        • 4.3、IAR地址配置及文件输出
        • 5、拓展:解析HEX文件
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档