前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >HashMap 精选面试题(背诵版)

HashMap 精选面试题(背诵版)

作者头像
沉默王二
发布2021-12-23 14:47:37
7010
发布2021-12-23 14:47:37
举报
文章被收录于专栏:沉默王二沉默王二

hello,大家好,我是二哥呀!

对于 Java 求职者来说,HashMap 可谓是重中之重,是面试的必考点。然而 HashMap 的知识点非常多,复习起来花费精力很大。

为了减轻大家在面试时的痛苦,二哥将读者库森的这篇 HashMap 的面试专题文章整理出来分享给大家,希望对小伙伴们有所帮助!

链接:https://zhuanlan.zhihu.com/p/362214327

01、HashMap的底层数据结构是什么?

JDK 7 中,HashMap 由“数组+链表”组成,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的。

在 JDK 8 中,HashMap 由“数组+链表+红黑树”组成。链表过长,会严重影响 HashMap 的性能,而红黑树搜索的时间复杂度是 O(logn),而链表是糟糕的 O(n)。因此,JDK 8 对数据结构做了进一步的优化,引入了红黑树,链表和红黑树在达到一定条件会进行转换:

  • 当链表超过 8 且数据总量超过 64 时会转红黑树。
  • 将链表转换成红黑树前会判断,如果当前数组的长度小于 64,那么会选择先进行数组扩容,而不是转换为红黑树,以减少搜索时间。

链表长度超过 8 体现在 putVal 方法中的这段代码:

代码语言:javascript
复制
//链表长度大于8转换为红黑树进行处理
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
    treeifyBin(tab, hash);

table 长度为 64 体现在 treeifyBin 方法中的这段代码::

代码语言:javascript
复制
final void treeifyBin(Node<K,V>[] tab, int hash) {
    int n, index; Node<K,V> e;
    if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
        resize();
}

MIN_TREEIFY_CAPACITY 的值正好为 64。

代码语言:javascript
复制
static final int MIN_TREEIFY_CAPACITY = 64;

JDK 8 中 HashMap 的结构示意图:

02、为什么链表改为红黑树的阈值是 8?

因为泊松分布,我们来看作者在源码中的注释:

Because TreeNodes are about twice the size of regular nodes, we use them only when bins contain enough nodes to warrant use (see TREEIFY_THRESHOLD). And when they become too small (due to removal or resizing) they are converted back to plain bins. In usages with well-distributed user hashCodes, tree bins are rarely used. Ideally, under random hashCodes, the frequency of nodes in bins follows a Poisson distribution (http://en.wikipedia.org/wiki/Poisson_distribution) with a parameter of about 0.5 on average for the default resizing threshold of 0.75, although with a large variance because of resizing granularity. Ignoring variance, the expected occurrences of list size k are (exp(-0.5) pow(0.5, k) / factorial(k)). The first values are: 0: 0.60653066 1: 0.30326533 2: 0.07581633 3: 0.01263606 4: 0.00157952 5: 0.00015795 6: 0.00001316 7: 0.00000094 8: 0.00000006 more: less than 1 in ten million

翻译过来大概的意思是:理想情况下使用随机的哈希码,容器中节点分布在 hash 桶中的频率遵循泊松分布,按照泊松分布的计算公式计算出了桶中元素个数和概率的对照表,可以看到链表中元素个数为 8 时的概率已经非常小,再多的就更少了,所以原作者在选择链表元素个数时选择了 8,是根据概率统计而选择的。

03、解决hash冲突的办法有哪些?HashMap用的哪种?

解决Hash冲突方法有:

  • 开放定址法:也称为再散列法,基本思想就是,如果p=H(key)出现冲突时,则以p为基础,再次hash,p1=H(p),如果p1再次出现冲突,则以p1为基础,以此类推,直到找到一个不冲突的哈希地址pi。因此开放定址法所需要的hash表的长度要大于等于所需要存放的元素,而且因为存在再次hash,所以只能在删除的节点上做标记,而不能真正删除节点。
  • 再哈希法:双重散列,多重散列,提供多个不同的hash函数,当R1=H1(key1)发生冲突时,再计算R2=H2(key1),直到没有冲突为止。这样做虽然不易产生堆集,但增加了计算的时间。
  • 链地址法:拉链法,将哈希值相同的元素构成一个同义词的单链表,并将单链表的头指针存放在哈希表的第i个单元中,查找、插入和删除主要在同义词链表中进行。链表法适用于经常进行插入和删除的情况。
  • 建立公共溢出区:将哈希表分为公共表和溢出表,当溢出发生时,将所有溢出数据统一放到溢出区。

HashMap中采用的是链地址法 。

04、为什么在解决 hash 冲突的时候,不直接用红黑树?而选择先用链表,再转红黑树?

因为红黑树需要进行左旋,右旋,变色这些操作来保持平衡,而单链表不需要。

当元素小于 8 个的时候,此时做查询操作,链表结构已经能保证查询性能。当元素大于 8 个的时候, 红黑树搜索时间复杂度是 O(logn),而链表是 O(n),此时需要红黑树来加快查询速度,但是新增节点的效率变慢了。

因此,如果一开始就用红黑树结构,元素太少,新增效率又比较慢,无疑这是浪费性能的。

05、HashMap默认加载因子是多少?为什么是 0.75,不是 0.6 或者 0.8 ?

作为一般规则,默认负载因子(0.75)在时间和空间成本上提供了很好的折衷。

详情参照这篇

06、HashMap 中 key 的存储索引是怎么计算的?

首先根据key的值计算出hashcode的值,然后根据hashcode计算出hash值,最后通过hash&(length-1)计算得到存储的位置。

详情参照这篇

07、JDK 8 为什么要 hashcode 异或其右移十六位的值?

因为在JDK 7 中扰动了 4 次,计算 hash 值的性能会稍差一点点。

从速度、功效、质量来考虑,JDK 8 优化了高位运算的算法,通过hashCode()的高16位异或低16位实现:(h = k.hashCode()) ^ (h >>> 16)

这么做可以在数组 table 的 length 比较小的时候,也能保证考虑到高低Bit都参与到Hash的计算中,同时不会有太大的开销。

08、为什么 hash 值要与length-1相与?

  • 把 hash 值对数组长度取模运算,模运算的消耗很大,没有位运算快。
  • 当 length 总是 2 的n次方时,h& (length-1)运算等价于对length取模,也就是 h%length,但是 & 比 % 具有更高的效率。

09、HashMap数组的长度为什么是 2 的幂次方?

2 的 N 次幂有助于减少碰撞的几率。如果 length 为2的幂次方,则 length-1 转化为二进制必定是11111……的形式,在与h的二进制与操作效率会非常的快,而且空间不浪费。我们来举个例子,看下图:

当 length =15时,6 和 7 的结果一样,这样表示他们在 table 存储的位置是相同的,也就是产生了碰撞,6、7就会在一个位置形成链表,4和5的结果也是一样,这样就会导致查询速度降低。

如果我们进一步分析,还会发现空间浪费非常大,以 length=15 为例,在 1、3、5、7、9、11、13、15 这八处没有存放数据。因为hash值在与14(即 1110)进行&运算时,得到的结果最后一位永远都是0,即 0001、0011、0101、0111、1001、1011、1101、1111位置处是不可能存储数据的。

再补充数组容量计算的小奥秘。

HashMap 构造函数允许用户传入的容量不是 2 的 n 次方,因为它可以自动地将传入的容量转换为 2 的 n 次方。会取大于或等于这个数的 且最近的2次幂作为 table 数组的初始容量,使用tableSizeFor(int)方法,如 tableSizeFor(10) = 16(2 的 4 次幂),tableSizeFor(20) = 32(2 的 5 次幂),也就是说 table 数组的长度总是 2 的次幂。JDK 8 源码如下:

代码语言:javascript
复制
static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

让cap-1再赋值给n的目的是另找到的目标值大于或等于原值。例如二进制1000,十进制数值为8。如果不对它减1而直接操作,将得到答案10000,即16。显然不是结果。减1后二进制为111,再进行操作则会得到原来的数值1000,即8。

10、HashMap 的put方法流程?

以JDK 8为例,简要流程如下:

1、首先根据 key 的值计算 hash 值,找到该元素在数组中存储的下标;

2、如果数组是空的,则调用 resize 进行初始化;

3、如果没有哈希冲突直接放在对应的数组下标里;

4、如果冲突了,且 key 已经存在,就覆盖掉 value;

5、如果冲突后,发现该节点是红黑树,就将这个节点挂在树上;

6、如果冲突后是链表,判断该链表是否大于 8 ,如果大于 8 并且数组容量小于 64,就进行扩容;如果链表节点大于 8 并且数组的容量大于 64,则将这个结构转换为红黑树;否则,链表插入键值对,若 key 存在,就覆盖掉 value。

11、HashMap 的扩容方式?

HashMap 在容量超过负载因子所定义的容量之后,就会扩容。

详情参照这篇

12、一般用什么作为HashMap的key?

一般用Integer、String 这种不可变类当作 HashMap 的 key,String 最为常见。

  • 因为字符串是不可变的,所以在它创建的时候 hashcode 就被缓存了,不需要重新计算。
  • 因为获取对象的时候要用到 equals() 和 hashCode() 方法,那么键对象正确的重写这两个方法是非常重要的。Integer、String 这些类已经很规范的重写了 hashCode() 以及 equals() 方法。

13、HashMap为什么线程不安全?

  • JDK 7 时多线程下扩容会造成死循环。
  • 多线程的put可能导致元素的丢失。
  • put和get并发时,可能导致get为null。

详情参照这篇

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2021-09-30,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 沉默王二 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 01、HashMap的底层数据结构是什么?
  • 02、为什么链表改为红黑树的阈值是 8?
  • 03、解决hash冲突的办法有哪些?HashMap用的哪种?
  • 04、为什么在解决 hash 冲突的时候,不直接用红黑树?而选择先用链表,再转红黑树?
  • 05、HashMap默认加载因子是多少?为什么是 0.75,不是 0.6 或者 0.8 ?
  • 06、HashMap 中 key 的存储索引是怎么计算的?
  • 07、JDK 8 为什么要 hashcode 异或其右移十六位的值?
  • 08、为什么 hash 值要与length-1相与?
  • 09、HashMap数组的长度为什么是 2 的幂次方?
  • 10、HashMap 的put方法流程?
  • 11、HashMap 的扩容方式?
  • 12、一般用什么作为HashMap的key?
  • 13、HashMap为什么线程不安全?
相关产品与服务
容器服务
腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档