大家好,又见面了,我是全栈君
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 9514 Accepted Submission(s): 5860
Problem Description
The inversion number of a given number sequence a1, a2, …, an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, …, an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, …, an-1, an (where m = 0 – the initial seqence) a2, a3, …, an, a1 (where m = 1) a3, a4, …, an, a1, a2 (where m = 2) … an, a1, a2, …, an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
Author
CHEN, Gaoli
Source
ZOJ Monthly, January 2003
Recommend
Ignatius.L
题目大意:
求逆序数。也就是给你一个序列,每次求逆序数,然再把第一个数放到这个序列的末尾,构成新的序列。问你这n个序列的最小的逆序数。
解题思路:
1、对于每一个序列。其原来的逆序数记为 pre , 假设当前把该序列 第一个数 a[0] 移动到尾部,那么新序列的逆序数为 pre-a[i]+(n-a[i]-1)
由于序列中比a[i]大的数有 n-a[i]-1 个。比a[i]小的有 a[i]个。
因此仅仅需求出第一个序列的逆序数,依次能够递推出这n个序列的逆序数,求出最小的就可以
2、求第一个序列的逆序数的方法
(1)暴力算法,据说不会超时
(2)线段树,建 [0,n]这段树。对于数据 a[i] ,先查询 (a[i]+1,n) 这段的值也就是比a[i]大的数的个数也就是 逆序数,然后插入 (a[i],a[i]) 值为1
代码:
#include <iostream>
#include <cmath>
#include <vector>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=5100;
struct tree{
int l,r,sum;
}a[maxn*4];
int data[maxn],n,m;
void build(int l,int r,int k){
a[k].l=l;
a[k].r=r;
a[k].sum=0;
if(l<r){
int mid=(l+r)/2;
build(l,mid,2*k);
build(mid+1,r,2*k+1);
}
}
void insert(int l,int r,int k,int c){
if(l<=a[k].l && a[k].r<=r){
a[k].sum+=c;
}else{
int mid=(a[k].l+a[k].r)/2;
if(r<=mid) insert(l,r,2*k,c);
else if(l>=mid+1) insert(l,r,2*k+1,c);
else{
insert(l,mid,2*k,c);
insert(mid+1,r,2*k+1,c);
}
a[k].sum=a[2*k].sum+a[2*k+1].sum;
}
}
int query(int l,int r,int k){
if(l<=a[k].l && a[k].r<=r){
return a[k].sum;
}else{
int mid=(a[k].l+a[k].r)/2;
if(r<=mid) return query(l,r,2*k);
else if(l>=mid+1) return query(l,r,2*k+1);
else{
return query(l,mid,2*k) + query(mid+1,r,2*k+1) ;
}
}
}
void solve(){
int ans=0;
build(1,n,1);
for(int i=1;i<=n;i++){
ans+=query(data[i]+1,n,1);
insert(data[i]+1,data[i]+1,1,1);
//cout<<data[i]<<" "<<ans<<endl;
}
int tmp=ans;
for(int i=1;i<=n;i++){
tmp-=data[i];
tmp+=n-data[i]-1;
if(tmp<ans) ans=tmp;
}
cout<<ans<<endl;
}
int main(){
while(scanf("%d",&n)!=EOF){
for(int i=1;i<=n;i++) scanf("%d",&data[i]);
solve();
}
return 0;
}
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/116730.html原文链接:https://javaforall.cn