前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >PP图和QQ图

PP图和QQ图

作者头像
全栈程序员站长
发布2022-07-22 11:33:18
发布2022-07-22 11:33:18
96200
代码可运行
举报
运行总次数:0
代码可运行

大家好,又见面了,我是你们的朋友全栈君。

一. QQ

分位数图示法(Quantile Quantile Plot,简称 Q-Q 图) 统计学里Q-Q图(Q代表分位数)是一个概率图,用图形的方式比较两个概率分布,把他们的两个分位数放在一起比较。首先选好分位数间隔。图上的点(x,y)反映出其中一个第二个分布(y坐标)的分位数和与之对应的第一分布(x坐标)的相同分位数。因此,这条线是一条以分位数间隔为参数的曲线。如果两个分布相似,则该Q-Q图趋近于落在y=x线上。如果两分布线性相关,则点在Q-Q图上趋近于落在一条直线上,但不一定在y=x线上。Q-Q图可以用来可在分布的位置-尺度范畴上可视化的评估参数。 从定义中可以看出Q-Q图主要用于检验数据分布的相似性,如果要利用Q-Q图来对数据进行正态分布的检验,则可以令x轴为正态分布的分位数,y轴为样本分位数,如果这两者构成的点分布在一条直线上,就证明样本数据与正态分布存在线性相关性,即服从正态分布。

二. PP图 P-P图是根据变量的累积概率对应于所指定的理论分布累积概率绘制的散点图,用于直观地检测样本数据是否符合某一概率分布。如果被检验的数据符合所指定的分布,则代表样本数据的点应当基本在代表理论分布的对角线上。 由于P-P图和Q-Q图的用途完全相同,只是检验方法存在差异。要利用QQ图鉴别样本数据是否近似于正态分布,只需看QQ图上的点是否近似地在一条直线附近,而且该直线的斜率为标准差,截距为均值.

用QQ图还可获得样本偏度和峰度的粗略信息.

scipy 画Q-Q图 例子:#qq图

代码语言:javascript
代码运行次数:0
运行
复制
fig = plt.figure()
res = stats.probplot(train['SalePrice'], plot=plt)
plt.show()

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/125454.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年4月5,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档