前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >JS算法探险之队列(Queue)

JS算法探险之队列(Queue)

作者头像
前端柒八九
发布2022-08-25 15:22:00
4790
发布2022-08-25 15:22:00
举报
文章被收录于专栏:柒八九技术收纳盒
  • 「Stay hungry」:永不满足,
  • 「Stay foolish」: 是说埋头做自己的事,不要理会前行路上的各种嘲讽声音。

大家好,我是「柒八九」

今天,我们继续探索JS算法相关的知识点。我们来谈谈关于队列Queue的相关知识点和具体的算法。

如果,想了解其他数据结构的算法介绍,可以参考我们已经发布的文章。如下是算法系列的往期文章。

文章list

好了,天不早了,干点正事哇。

你能所学到的知识点

  1. JS队列的各种实现
  2. 滑动窗口的概念和对应算法
  3. 利用队列解决和二叉树层树相关的算法

文章概要

  1. 知识点简讲
  2. 滑动窗口
  3. 二叉树的广度优先搜索(BFS)

知识点简讲

队列是个啥

队列是一种遵从「先进先出」FIFO)原则的「有序集合」。队列在尾部添加新元素,并从顶部移除元素。「最新添加的元素必须排在队列的末尾」

在现实中,最常见的队列的例子就是排队。

JS版本的Queue

由于JS语言的特殊性,不存在真正意义上的Queue结构,一般使用数组特定的Apipush/shift)模拟最简单的queue使得能够满足「先进先出」的特性。

代码语言:javascript
复制
let queue = [];
queue.push(1);
queue.push(2);
==== 入队 1、2====

queue.shift() // 1出队
queue.shift() // 2出队

在一些简单的场景下,利用数组来模拟队列是可以满足条件的。但是作为一个功能完备的数据结构,还有一些其他的功能,使用上述的实现方式显的有点捉襟见肘。

「这里做一个简单的补充」:其实针对stack/queue的实现方式有两种,一种是利用数组实现一个存储地址连续的结构,另外一种实现方式是利用链表实现存储地址不连续的结构。

那么,我们就自己实现一个比较功能完备的queue。它有如下的功能点

  • enqueue(element(s)):向队列「尾部」添加一个(或多个)新的项。
  • dequeue():移除队列的第一项(即排在队列最前面的项)并返回被移除的元素。
  • peek():返回队列中第一个元素——最先被添加,也将是最先被移除的元素。队列不做任何变动(不移除元素,只返回元素信息——与 Stack 类的 peek 方法非常类似)。
  • isEmpty():如果队列中不包含任何元素,返回 true,否则返回 false
  • size():返回队列包含的元素个数,与数组的 length 属性类似。

数组版本

代码语言:javascript
复制
class Queue {
   constructor() {
     this.items = []; 
   }
   // 入队
   enqueue(element) {
     this.items.push(element);
  } 
  // 出队,并返回队首元素
  dequeue() {
    return this.items.shift();
  } 
  // 查看,队首元素
  peek() {
    return this.items[0]
  } 
  // 如果队列里没有任何元素就返回`true`,否则返回`false`
  isEmpty() {
   return this.items.length === 0;
  }
  // 返回队列的元素个数
  size() {
   return this.items.length;
  }
  // 移除队列里所有的元素
  clear() {
   this.items = [];
  }
} 

上面是使用数组来实现queue,能够实现基本的CRUD。但是,如果还记得我们在介绍stack的时候,也利用数组实现了一个Stack

下面是用数组实现stackqueue的具体代码。可以发现,在利用数组实现这两个数据结构时候,除了针对「剔除/查看」数据有点不同,其他方法都一模一样。(除去方法名的差异)

在针对一些不强调消耗和性能的情况下,用数组实现queue是一个不错且简单的方式。但是,由于queue删除数据的位置是在队首。在利用数组实现的queue中,每次删除一个元素,数组剩余的元素的序号地址,都需要进行变更。这样会造成不必要的性能损耗。

所以,大部分情况下,queue是利用链表构建的。

链表版本

这里再做一个简单说明,在js中,对象类型数据,它本身就是一个以零散方式存储的。我们来简单做一个实验。

代码语言:javascript
复制
class TestObject {
    constructor() {
        this.elements = {
            o1:{},
            o2:{},
        };
        
  }
}
let to = new TestObject()

我们利用Memory获取了,此时内存信息。我们特意查看了TestObjectelements发现,针对他两个属性o1/o2所存的数据都放在不同的内存地址上。

我们可以使用对象来存储元素信息。这样,就不需要「额外」的构建链表节点。

代码语言:javascript
复制
class Queue {
  constructor() {
    this.elements = {};
    this.head = 0;
    this.tail = 0;
  }
  enqueue(element) {
    this.elements[this.tail] = element;
    this.tail++;
  }
  dequeue() {
    const item = this.elements[this.head];
    delete this.elements[this.head];
    this.head++;
    return item;
  }
  peek() {
    return this.elements[this.head];
  }
  size() {
    return this.tail - this.head;
  }
  isEmpty() {
    return this.tail - this.head === 0; 
  }
}

滑动窗口

在数组中某一个长度的「子数组」可以看成数组的一个「窗口」。若给定数组[1,2,3,4,5,6],那么子数组[2,3,4]就是其中一个大小为3的窗口。窗口向右滑动一个数字,那么窗口就包含数字[3,4,5]

也就是向右滑动窗口,每向右滑动一个数字,都在窗口的「最右边」插入一个数字,同时把「最左边」的数字删除。即满足队列 「先进先出」的特性。

滑动窗口的平均值

题目描述:

❝给定一个「整数数据流」和一个「窗口大小」,根据该滑动窗口的大小,计算滑动窗口里所有数字的平均值。

  • 该类型的构造函数的参数确定滑动窗口的大小
  • 每次调用next函数,会在滑动窗口中添加一个整数,并返回滑动窗口的所有数字的平均值

分析

  1. 在窗口中添加数字,当窗口中的数字的数目超过限制时,还可以从窗口中删除数字。
  • 例如,当窗口的大小为3,在添加第四个数字时,就需要从窗口中删除「最早添加」进来的数字。
  • 这是一种「先进先出」的顺序,对应的数据容器为「队列」
  1. 每次在窗口中添加数字之后,需要判断是否超出窗口的大小限制。如果超出限制,从队列中删除一个数字
  2. 利用sum实时记录,窗口中「现存数据」的和

代码实现

代码语言:javascript
复制
class MovingAverage {
    constructor(size) {
      this.nums = new Queue();
      this.capacity = size;
      this.sum = 0;
    }

    next(val) {
      this.nums.enqueue(val);
      this.sum+=val;
      if(this.nums.size()>this.capacity){
        this.sum -=this.nums.dequeue();
      }
      return this.sum / this.nums.size()
    }
}

二叉树的广度优先搜索(BFS)

二叉树的广度优先搜索是从上到下「按层」遍历二叉树,从二叉树的根节点开始,先遍历二叉树的第一层,再遍历第二层,以此类推。

通常「基于队列来实现二叉树的广度优先搜索」

  • 从二叉树的根节点开始,先把根节点放入到一个队列中,然后每次从队列中取出一个节点遍历
  • 如果该节点有左右子节点,则分别将它们添加到队列中。(先左后右)
  • 以此类推,直到所有节点都被遍历

「二叉树节点」

代码语言:javascript
复制
  class TreeNode {
      val: number
      left: TreeNode | null
      right: TreeNode | null
      constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
          this.val = (val===undefined ? 0 : val)
          this.left = (left===undefined ? null : left)
          this.right = (right===undefined ? null : right)
      }
  }

利用queue实现「二叉树广度优先遍历」

代码语言:javascript
复制
function bfs(root){
  let queue = new Queue();
  if(root!=null) {
    queue.enqueue(root);
  }
  
  let result = [];
  while(!queue.isEmpty()){
    let node = queue.dequeue();
    result.push(node.val)
    
    if(node.left!=null){
      queue.enqueue(node.left);
    }
    
    if(node.right!=null){
      queue.enqueue(node.right);
    }
  }
  return result;
}

由于queue「先进先出」特性,二叉树的「某一层节点按照从左到右的顺序」插入队列中。因此,这些节点一定会按照从左到右的顺序遍历到。用广度优先(BFS)的顺序遍历二叉树,很容易知道

  • 「每层」最左边或者最右边的节点
  • 「每层」的最大值或者最小值

也就是说,关于二叉树的题目如果出现「层」的概念,尝试用广度优先来解决问题。

二叉树中每层的最大值

题目描述:

❝输入一课二叉树,请找出二叉树中「每层」的最大值。 示例:输入: root = [1,3,2,5,3,null,9] 输出: [1,3,9]

用一个队列实现二叉树的广度优先搜索

分析

  1. 找出二叉树中「每层」的最大值,在遍历的时需要知道每层什么时候开始,什么时候结束。
    • 因为,在某个时刻,队列中可能存在位于不同层的节点,如果不做区分的话,是无法获取到某层数据的最大值
  2. 解决上述问题的一个办法就是「计数」
    • 用两个变量分别记录两层节点的数目
    • 变量current记录当前遍历这一层中位于队列之中节点的数量
    • 变量next记录下一层中位于队列之中节点的数量
  3. 最开始把根节点插入队列中,把变量current初始化为1.
    • 逐个从队列中取出节点遍历
    • 每当从队列中「取出一个节点」时,「当前层的剩余节点数」就少一个,即current - 1
    • 当前遍历的节点有子节点,将子节点插入队列中,此时变量next的数目增加1即next + 1
  4. current的数值变成0时,表示当前层的所有节点都已经遍历完。、
    • 此时,可以通过比较当前层的所有节点的值,找出最大值
  5. 在开始遍历下一层节点之前
    • 需要把current的值设为next的值
    • 变量next重新初始化为0

代码实现

代码语言:javascript
复制
function largestValues(root) {
  let current = 0;
  let next = 0;
  let queue = new Queue();
  let result = [];
  if(root!=null){
    queue.enqueue(root);
    current++;
  }
  let max = Number.MIN_SAFE_INTEGER;
  while(!queue.isEmpty()){
    let node = queue.dequeue();
    current--;
    max = Math.max(max,node.val);
    
    if(node.left!=null){
      queue.enqueue(node.left);
      next++;
    }
    
    if(node.right !=null){
      queue.enqueue(node.right);
      next++;
    }
    
    if(current==0){
      result.push(max);
      max = Number.MIN_SAFE_INTEGER;
      current = next;
      next = 0;
    }
  }
  return result;
}

用两个队列实现二叉树的广度优先搜索

分析

  1. 利用一个队列区分不同的层,需要用到两个变量current/next,我们可以换一个思路。将不同层树的节点,存入不同的队列中。
    • queue1只放当前遍历层的节点
    • queue2只放下一层的节点
  2. 最开始时,把二叉树的根节点放入队列queue1中。
    • 接下来,每次从队列中取出一个节点遍历
    • 队列queue1用来存放当前遍历层的节点,总是从队列queue1中取出节点来遍历
    • 如果当前遍历的节点有子节点,并且子节点位于下一层,则把子节点放入队列queue2
  3. 当队列queue1被清空时,此时能够获取到当前层的最大值
  4. 在开始遍历下一层之前,
    • 把队列queue1指向queue2
    • 将队列queue2重新初始化为空队列

代码实现

代码语言:javascript
复制
function largestValues(root) {
  
  let q1 = new Queue();
  let q2 = new Queue();
  let result = [];
  if(root!=null){
    q1.enqueue(root);
  }
  let max = Number.MIN_SAFE_INTEGER;
  while(!q1.isEmpty()){
    let node = q1.dequeue();
    max = Math.max(max,node.val);
    
    if(node.left!=null){
      q2.enqueue(node.left);
    }
    
    if(node.right !=null){
      q2.enqueue(node.right);
    }
    
    if(q1.isEmpty()){
      result.push(max);
      max = Number.MIN_SAFE_INTEGER;
      q1 = q2;
      q2 = new Queue();
    }
  }
  return result;
}

二叉树最底层最左边的值

题目描述:

❝输入一课二叉树,找出它「最底层最左边」节点的值。 示例:输入: root = [1,2,3,4,null,5,6,null,null,7] 输出: 7

分析

  1. 题目越短,越需要咬文嚼字。
    • 二叉树
    • 最底层
  2. 根据①所得,我们可以使用二叉树的广度优先遍历(BFS)来进行层级的处理。
  3. 最底层最左边的节点就是最后一层的第一个节点
  4. 可以使用一个bottomLeft来保存每层最左边的节点的值。没当新的层级出现时候,将bottomLeft的值变更为第一个节点的值。
  5. 需要区分不同的层,我们采用两个队列的方式来实现

代码实现

代码语言:javascript
复制
function findBottomLeftValue(root){
  let q1 = new Queue();
  let q2 = new Queue();
  
  q1.enqueue(root);
  let bottomLeft = root.val;
  
  while(!q1.isEmpty()){
    let node = q1.dequeue();
    if(node.left !=null){
      q2.enqueue(node.left)
    }
    
    if(node.right !=null){
      q2.enqueue(node.right)
    }
    
    if(q1.isEmpty()){
      q1 = q2;
      q2 = new Queue();
      // 当q1为空时,开始遍历下一层,如果下一层还有节点,则更新bottomLeft
      if(!q1.isEmpty()){
        bottomLeft = q1.peek().val;
      }
    }
  }
  return bottomLeft
}

二叉树的右侧视图

题目描述:

❝输入一课二叉树,站在该二叉树的右侧,从上到下看到的节点构成二叉树的右侧视图。 示例:输入: root = [1,2,3,null,5,null,4] 输出: [1,3,4]

分析

  1. 题目越怪,越需要向已知套路靠
  2. 根据右侧视图的概念和示例的结果分析,其实它就是想要「每层最右边」的一个节点,因此二叉树的右侧视图其实就是从上到下每层最右边的节点
  3. 有几个关键节点
    • 二叉树
    • 区分不同的层
    • 最右边的节点
  4. 直接二叉树bfs安排上

代码实现

代码语言:javascript
复制
function rightSideView(root){
  let result = [];
  if(root==null) return result;
  
  let q1 = new Queue();
  let q2 = new Queue();
  q1.enqueue(root);
  while(!q1.isEmpty()){
    let node = q1.dequeue();
    if(node.left!=null){
      q2.enqueue(node.left)
    }
    
    if(node.right !=null){
      q2.enqueue(node.right)
    }
    
    if(q1.isEmpty()){
      result.push(node.val); //此时node是当前层的最后一个节点
      q1= q2;
      q2 = new Queue();
    }
  }
  return result;
}

后记

「分享是一种态度」

参考资料:剑指offer/leetcode官网/学习JavaScript数据结构与算法第3版

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-06-30,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 前端柒八九 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 文章list
  • 你能所学到的知识点
  • 文章概要
  • 知识点简讲
    • 队列是个啥
      • JS版本的Queue
        • 数组版本
        • 链表版本
    • 滑动窗口
      • 滑动窗口的平均值
        • 分析
        • 代码实现
    • 二叉树的广度优先搜索(BFS)
      • 二叉树中每层的最大值
        • 用一个队列实现二叉树的广度优先搜索
        • 分析
        • 代码实现
        • 用两个队列实现二叉树的广度优先搜索
        • 分析
        • 代码实现
        • 分析
        • 代码实现
        • 分析
        • 代码实现
    • 二叉树最底层最左边的值
    • 二叉树的右侧视图
    • 后记
    相关产品与服务
    容器服务
    腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档