Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >陀螺仪工作原理_电子陀螺仪工作原理

陀螺仪工作原理_电子陀螺仪工作原理

作者头像
全栈程序员站长
发布于 2022-09-21 10:53:32
发布于 2022-09-21 10:53:32
7960
举报

大家好,又见面了,我是你们的朋友全栈君。

我们知道陀螺仪使用来测量平衡和转速的工具,在载体高速转动的时候,陀螺仪始终要通过自我调节,使得转子保持原有的平衡,这一点是如何做到的?带着这个问题,我们来看一下这个古老而又神秘的装置的工作原理。

我把三个Gimbal环用不同的颜色做了标记,底部三个轴向,RGB分别对应XYZ。

假设现在这个陀螺仪被放在一艘船上,船头的方向沿着+Z轴,也就是右前方

现在假设,船体发生了摇晃,是沿着前方进行旋转的摇晃,也就是桶滚。由于转子和旋转轴具有较大的惯性,只要没有直接施加扭矩,就会保持原有的姿态。由于上图中绿色的活动的连接头处是可以灵活转动的,此时将发生相对旋转,从而出现以下的情形:

再次假设,船体发生了pitch摇晃,也就是俯仰。同样,由于存在相应方向的可以相对旋转的连接头(红色连接头),转子和旋转轴将仍然保持平衡,如下图:

最后假设,船体发生了yaw摇晃,也就是偏航,此时船体在发生水平旋转。相对旋转发生在蓝色连接头。如下图:

最终,在船体发生Pitch、Yaw、Roll的情况下,陀螺仪都可以通过自身的调节,而让转子和旋转轴保持平衡。

陀螺仪中的万向节死锁

现在看起来,这个陀螺仪一切正常,在船体发生任意方向摇晃都可以通过自身调节来应对。然而,真的是这样吗?

假如,船体发生了剧烈的变化,此时船首仰起了90度(这是要翻船的节奏。。。。),船体再次发生转动,沿着当前世界坐标的+Z轴(蓝色轴,应该正指向船底)进行转动,那么来看看发生了什么情况。

现在,转子不平衡了。它失去了自身的调节能力。那么这是为什么呢? 之前陀螺仪之所以能通过自身调节,保持平衡,是因为存在可以相对旋转的连接头。在这种情况下,已经不存在可以相对旋转的连接头了。

那么连接头呢?去了哪里?显然,它还是在那里,只不过是,连接头可以旋转的相对方向不是现在需要的按着+Z轴方向。从上图中,我们清楚地看到:

  • 红色连接头:可以给予一个相对俯仰的自由度。
  • 绿色连接头:可以给予一个相对偏航的自由度。
  • 蓝色连接头:可以给予一个相对偏航的自由度。

没错,三个连接头,提供的自由度只对应了俯仰和偏航两个自由度,横滚自由度丢失了。这就是陀螺仪上的“万向节死锁”问题。

若计绿轴为x轴,红轴为y轴,蓝轴为z轴。那么记为z轴为主轴,y轴为副轴,x轴为自由轴;绕z轴会影响到x,y轴;绕y轴会影响到x轴,绕x轴不会影响其他轴。

这种动态方式下的欧拉角(z,y,x)等价于静态欧拉角(x,y,z)。

万向节锁死就是当某个旋转之后,某个方向有两个轴向,所以就去缺少一个自由度,不能直接进行单一轴的旋转到达某个位姿。所以只能间接地曲线(插值)到达。

参考:https://blog.csdn.net/qq_34552886/article/details/79772143

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/167694.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
欧拉角_欧拉角 图
来源 https://www.zhihu.com/question/47736315
全栈程序员站长
2022/09/20
7780
欧拉角_欧拉角 图
坐标转换与姿态描述
为了能够科学的反映物体的运动特性,会在特定的坐标系中进行描述,一般情况下,分析飞行器运动特性经常要用到以下几种坐标系统1、大地坐标系统;2、地心固定坐标系统;3、本地北东地坐标系统;4、机载北东地坐标系统;5、机体轴坐标系统。 其中3、4、5在我们建模、设计控制律时都是经常需要使用的坐标系,描述物体(刚体)位姿信息的6个自由度信息都是在这三个坐标系中产生的
小飞侠xp
2019/10/13
2.5K0
欧拉角和万向节死锁
有很多种方式可以描述旋转,但是使用欧拉角来描述是最容易让人理解的。这篇文章将会介绍欧拉角的基础知识、欧拉角的问题和如何去解决这些问题,当然还有欧拉角无法解决的万向节死锁问题,在最后还会介绍如何将欧拉角转换成矩阵,便于程序计算。
羽月
2022/10/08
1.3K0
欧拉角和万向节死锁
第4章-变换-4.2-特殊矩阵变换和运算
在本节中,将介绍和导出对实时图形必不可少的几个矩阵变换和运算。首先,我们介绍了欧拉变换(连同它的参数提取),这是一种描述方向的直观方式。然后我们谈到从单个矩阵中反演一组基本变换。最后,导出了一种方法,可以绕任意轴旋转实体。
charlee44
2022/01/04
3.6K0
第4章-变换-4.2-特殊矩阵变换和运算
js调用原生API--陀螺仪和加速器
介绍 W3C设备方向规范允许开发者使用陀螺仪和加速计的数据。这个功能能被用来在现代浏览器里构筑虚拟现实和增强现实的体验。但是这处理原生数据的学习曲线对开发者来说有点大。 在本文中我们要分解并解释设备方
前朝楚水
2018/04/03
4.8K0
js调用原生API--陀螺仪和加速器
四旋翼飞行器姿态控制(四轴飞行器姿态解算)
姿态航向参考系统AHRS(Attitude and Heading Reference System)
全栈程序员站长
2022/08/01
1.4K0
四旋翼飞行器姿态控制(四轴飞行器姿态解算)
关于飞机姿态角的学习分享
飞机姿态角是按欧拉概念定义的,故亦称欧拉角。飞机姿态角是由机体坐标系与地理坐标系之间的关系确定的,用航向角、俯仰角和横滚角三个欧拉角表示。
用户7053485
2020/03/19
6.5K0
姿态传感器mpu6050_六轴陀螺仪原理
陀螺仪是用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。 从力学的观点近似的分析陀螺的运动时,可以把它看成是一个刚体,刚体上有一个万向支点,而陀螺可以绕着这个支点作三个自由度的转动,所以陀螺的运动是属于刚体绕一个定点的转动运动。更确切地说,一个绕对称铀高速旋转的飞轮转子叫陀螺。将陀螺安装在框架装置上,使陀螺的自转轴有角转动的自由度,这种装置的总体叫做陀螺仪。 陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。
全栈程序员站长
2022/11/19
2K0
姿态传感器mpu6050_六轴陀螺仪原理
四旋翼飞行器1——结构和控制原理
四轴飞行器是一个在空间具有6个活动自由度(分别沿3个坐标轴作平移和旋转动作),但是只有4个控制自由度(四个电机的转速)的系统,因此被称为欠驱动系统(只有当控制自由度等于活动自由度的时候才是完整驱动系统)
全栈程序员站长
2022/07/23
1.8K0
四旋翼飞行器1——结构和控制原理
四旋翼无人飞行器自主飞行控制原理
形式如图所示,电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。 与传统的直升机相比,四旋翼飞行器有下列优势:各个旋翼对机身所施加的反扭矩与旋翼的旋转方向相反,因此当电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,可以平衡旋翼对机身的反扭矩。四旋翼飞行器在空间共有6个自由度(分别沿3个坐标轴作平移和旋转动作),这6个自由度的控制都可以通过调节不同电机的转速来实现。 其基本运动状态分别是: (1)垂直运动;(2)俯仰运动; (3
机器人网
2018/04/12
2.2K0
四旋翼无人飞行器自主飞行控制原理
三维空间的刚体运动
一个刚体在三维空间中的运动如何描述? 我们知道是由旋转加平移组成的,平移很简单,但是旋转有点麻烦。 三维空间的刚体运动的描述方式:旋转矩阵、变换矩阵、四元数、欧拉角。 刚体,不光有位置,而且还有姿态。相机可以看成是三维空间的一个刚体,位置指的就是相机在空间处于哪个地方?而姿态指的是相机的朝向(例如:相机位于(0, 0,0)点处,朝向正东方)但是这样去描述比较繁琐。
Albert_xiong
2021/06/21
1.1K0
三维空间的刚体运动
树莓派基础实验31:MPU6050陀螺仪加速度传感器实验
   MPU6050是世界上第一款也是唯一一款专为智能手机、平板电脑和可穿戴传感器的低功耗、低成本和高性能要求而设计的6轴运动跟踪设备。    它集成了3轴MEMS陀螺仪,3轴MEMS加速度计,以及一个可扩展的数字运动处理器 DMP( DigitalMotion Processor),可用I2C接口连接一个第三方的数字传感器,比如磁力计。扩展之后就可以通过其 I2C或SPI接口输出一个9轴的信号( SPI接口仅在MPU-6000可用)。 MPU-60X0也可以通过其I2C接口连接非惯性的数字传感器,比如压力传感器。
张国平
2020/09/27
5.9K0
加速计和陀螺仪
iPhone在静止时会受到地球引力,以屏幕中心为坐标原点,建立一个三维坐标系(如右图),此时iPhone收到的地球引力会分布到三个轴上。 iOS开发者可以通过CoreMotion框架获取分布到三个轴的值。如果iPhone是如图放置,则分布情况为x=0,y=-1.0,z=0。 在CoreMotion中地球引力(重力)的表示为1.0。
落影
2019/01/28
2.1K0
加速计和陀螺仪
从零开始学习自动驾驶系统(八)-基础知识之车辆姿态表达
辆位置和姿态是自动驾驶中的一个基础问题,只有解决了车辆的位置和姿态,才能将自动驾驶的各个模块关联起来。车辆的位置和姿态一般由自动驾驶的定位模块输出。
YoungTimes
2022/04/28
2.9K0
从零开始学习自动驾驶系统(八)-基础知识之车辆姿态表达
Unity中陀螺仪控制
这里就直接上代码,代码带有注释,后续引用在更新! private const float lowPassFilterFactor = 0.2f; Gyroscope go; bool gyinfo; protected void Start() { gyinfo = SystemInfo.supportsGyroscope; go = Input.gyro; //设置设备陀螺仪的开启/关闭状态,使用陀螺仪功能必须设置
bering
2019/12/03
2.3K0
无人机中的IMU单元(MEMS 三轴加速计、三轴陀螺仪、三轴磁力计)
三轴加速度计是一种惯性传感器,能够测量物体的比力,即去掉重力后的整体加速度或者单位质量上作用的非引力。当加速度计保持静止时,加速度计能够感知重力加速度,而整体加速度为零。在自由落体运动中,整体加速度就是重力加速度,但加速度计内部处于失重状态,而此时三轴加速度计输出为零。
3D视觉工坊
2020/12/11
3K0
无人机中的IMU单元(MEMS 三轴加速计、三轴陀螺仪、三轴磁力计)
陀螺仪相关测试电路
陀螺仪是无人机惯导系统最基本的组成元件之一,通过对陀螺仪输出的角速度进行积分,能够获得无人机的姿态角信息;在兴趣爱好的驱动下,近来购买了MPU-6050相关模块,通过串口把测试结果传输到电脑端,实现了位姿信号的采集,具体如下图所示:
联远智维
2022/01/20
9380
陀螺仪相关测试电路
四轴飞行器姿态控制算法
姿态解算 姿态解算(attitude algorithm),是指把陀螺仪,加速度计, 罗盘等的数据融合在一起,得出飞行器的空中姿态,飞行器从陀螺仪器的三轴角速度通过四元数法得到俯仰,航偏,滚转角,这是
机器人网
2018/04/25
2.1K0
四轴飞行器姿态控制算法
《游戏引擎架构》阅读笔记 第一部分第4章
本系列博客为《游戏引擎架构》一书的阅读笔记,旨在精炼相关内容知识点,记录笔记,以及根据目前(2022年)的行业技术制作相关补充总结。 本书籍无硬性阅读门槛,但推荐拥有一定线性代数,高等数学以及编程基础,最好为制作过完整的小型游戏demo再来阅读。 本系列博客会记录知识点在书中出现的具体位置。并约定(Pa b),其中a为书籍中的页数,b为从上往下数的段落号,如有lastb字样则为从下往上数第b段。 本系列博客会约定用【】来区别本人所书写的与书中观点不一致或者未提及的观点,该部分观点受限于个人以及当前时代的视角
[Sugar]
2022/10/28
3730
《游戏引擎架构》阅读笔记 第一部分第4章
【GAMES101】三维变换
games101的第四节课讲了三维变换和观察变换,我们这里先记录一下三维变换的知识,后面再讲观察变换
叶茂林
2023/12/08
1970
【GAMES101】三维变换
相关推荐
欧拉角_欧拉角 图
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
查看详情【社区公告】 技术创作特训营有奖征文