
PyTorch 2.0 于 2022 年 12 月上旬在 NeurIPS 2022 上发布,它新增的 torch.compile 组件引起了广泛关注,因为该组件声称比 PyTorch 的先前版本带来更大的计算速度提升。

这对我们来说是一个好消息,训练时间改进的结果令人印象深刻。PyTorch 团队在发布新闻稿和 PyTorch GitHub 上没有提到的是 PyTorch 2.0 推理性能。所以我们来对推理的速度做一个简单的研究,这样可以了解 PyTorch 2.0 如何与其他推理加速器(如 Nvidia TensorRT 和 ONNX Runtime)是否还有差距。
我们使用 Nebuly 的开源库 Speedster 运行了一些推理测试,对于这个我们这个测试,Speedster 允许我们运行 TensorRT、ONNX Runtime,并将它们与 16 位和 8 位动态和静态量化相结合(仅用 2 行代码)。在测试期间,我们还使用 Speedster 收集有关顶级策略的性能信息,以减少推理延迟。
这次测试是在带有 ResNet 的 Nvidia 3090Ti GPU 进行的,与 PyTorch 2.0 新闻稿中示例中使用的模型相同。
PyTorch 2.0 的推理性能结果如下图:

以下是测试结果的 4个要点总结:
基准测试高度依赖于所使用的数据、模型、硬件和优化技术。为了在推理中获得最佳性能,始终建议在将模型部署到生产环境之前测试。
参考
Speedster 是一个开源工具,可硬件上自动应用 SOTA 优化技术实现最大的推理加速。
本文的代码在这里:
https://github.com/diegofiori/benchmark-pytorch2.0-with-nebullvm
今天是 2023年1月1日,祝各位2023年元旦节快乐
本文分享自 DeepHub IMBA 微信公众号,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。
本文参与 腾讯云自媒体同步曝光计划 ,欢迎热爱写作的你一起参与!