function Person(name) {
this.name = name
}
var p2 = new Person('king');
console.log(p2.__proto__) //Person.prototype
console.log(p2.__proto__.__proto__) //Object.prototype
console.log(p2.__proto__.__proto__.__proto__) // null
console.log(p2.__proto__.__proto__.__proto__.__proto__)//null后面没有了,报错
console.log(p2.__proto__.__proto__.__proto__.__proto__.__proto__)//null后面没有了,报错
console.log(p2.constructor)//Person
console.log(p2.prototype)//undefined p2是实例,没有prototype属性
console.log(Person.constructor)//Function 一个空函数
console.log(Person.prototype)//打印出Person.prototype这个对象里所有的方法和属性
console.log(Person.prototype.constructor)//Person
console.log(Person.prototype.__proto__)// Object.prototype
console.log(Person.__proto__) //Function.prototype
console.log(Function.prototype.__proto__)//Object.prototype
console.log(Function.__proto__)//Function.prototype
console.log(Object.__proto__)//Function.prototype
console.log(Object.prototype.__proto__)//null这道义题目考察原型、原型链的基础,记住就可以了。
优点:
1.体验好,不刷新,减少 请求 数据ajax异步获取 页面流程;
2.前后端分离
3.减轻服务端压力
4.共用一套后端程序代码,适配多端
缺点:
1.首屏加载过慢;
2.SEO 不利于搜索引擎抓取在开发过程中遇到类似这样的问题:
let n1 = 0.1, n2 = 0.2
console.log(n1 + n2) // 0.30000000000000004这里得到的不是想要的结果,要想等于0.3,就要把它进行转化:
(n1 + n2).toFixed(2) // 注意,toFixed为四舍五入toFixed(num) 方法可把 Number 四舍五入为指定小数位数的数字。那为什么会出现这样的结果呢?
计算机是通过二进制的方式存储数据的,所以计算机计算0.1+0.2的时候,实际上是计算的两个数的二进制的和。0.1的二进制是0.0001100110011001100...(1100循环),0.2的二进制是:0.00110011001100...(1100循环),这两个数的二进制都是无限循环的数。那JavaScript是如何处理无限循环的二进制小数呢?
一般我们认为数字包括整数和小数,但是在 JavaScript 中只有一种数字类型:Number,它的实现遵循IEEE 754标准,使用64位固定长度来表示,也就是标准的double双精度浮点数。在二进制科学表示法中,双精度浮点数的小数部分最多只能保留52位,再加上前面的1,其实就是保留53位有效数字,剩余的需要舍去,遵从“0舍1入”的原则。
根据这个原则,0.1和0.2的二进制数相加,再转化为十进制数就是:0.30000000000000004。
下面看一下双精度数是如何保存的:
对于0.1,它的二进制为:
0.00011001100110011001100110011001100110011001100110011001 10011...转为科学计数法(科学计数法的结果就是浮点数):
1.1001100110011001100110011001100110011001100110011001*2^-4可以看出0.1的符号位为0,指数位为-4,小数位为:
1001100110011001100110011001100110011001100110011001那么问题又来了,指数位是负数,该如何保存呢?
IEEE标准规定了一个偏移量,对于指数部分,每次都加这个偏移量进行保存,这样即使指数是负数,那么加上这个偏移量也就是正数了。由于JavaScript的数字是双精度数,这里就以双精度数为例,它的指数部分为11位,能表示的范围就是0~2047,IEEE固定双精度数的偏移量为1023。
-1022~1013。对于上面的0.1的指数位为-4,-4+1023 = 1019 转化为二进制就是:1111111011.
所以,0.1表示为:
0 1111111011 1001100110011001100110011001100110011001100110011001说了这么多,是时候该最开始的问题了,如何实现0.1+0.2=0.3呢?
对于这个问题,一个直接的解决方法就是设置一个误差范围,通常称为“机器精度”。对JavaScript来说,这个值通常为2-52,在ES6中,提供了Number.EPSILON属性,而它的值就是2-52,只要判断0.1+0.2-0.3是否小于Number.EPSILON,如果小于,就可以判断为0.1+0.2 ===0.3
function numberepsilon(arg1,arg2){
return Math.abs(arg1 - arg2) < Number.EPSILON;
}
console.log(numberepsilon(0.1 + 0.2, 0.3)); // truesymbol 有什么用处可以用来表示一个独一无二的变量防止命名冲突。但是面试官问还有吗?我没想出其他的用处就直接答我不知道了,还可以利用 symbol 不会被常规的方法(除了 Object.getOwnPropertySymbols 外)遍历到,所以可以用来模拟私有变量。
主要用来提供遍历接口,布置了 symbol.iterator 的对象才可以使用 for···of 循环,可以统一处理数据结构。调用之后回返回一个遍历器对象,包含有一个 next 方法,使用 next 方法后有两个返回值 value 和 done 分别表示函数当前执行位置的值和是否遍历完毕。
Symbol.for() 可以在全局访问 symbol
function A(){
}
function B(a){
this.a = a;
}
function C(a){
if(a){
this.a = a;
}
}
A.prototype.a = 1;
B.prototype.a = 1;
C.prototype.a = 1;
console.log(new A().a);
console.log(new B().a);
console.log(new C(2).a);输出结果:1 undefined 2
解析:
function Foo(){
Foo.a = function(){
console.log(1);
}
this.a = function(){
console.log(2)
}
}
Foo.prototype.a = function(){
console.log(3);
}
Foo.a = function(){
console.log(4);
}
Foo.a();
let obj = new Foo();
obj.a();
Foo.a();输出结果:4 2 1
解析:
参考 前端进阶面试题详细解答
常用 Loader:
file-loader: 加载文件资源,如 字体 / 图片 等,具有移动/复制/命名等功能;url-loader: 通常用于加载图片,可以将小图片直接转换为 Date Url,减少请求;babel-loader: 加载 js / jsx 文件, 将 ES6 / ES7 代码转换成 ES5,抹平兼容性问题;ts-loader: 加载 ts / tsx 文件,编译 TypeScript;style-loader: 将 css 代码以<style>标签的形式插入到 html 中;css-loader: 分析@import和url(),引用 css 文件与对应的资源;postcss-loader: 用于 css 的兼容性处理,具有众多功能,例如 添加前缀,单位转换 等;less-loader / sass-loader: css预处理器,在 css 中新增了许多语法,提高了开发效率;编写原则:
函数防抖的实现:
function debounce(fn, wait) {
var timer = null;
return function() {
var context = this,
args = [...arguments];
// 如果此时存在定时器的话,则取消之前的定时器重新记时
if (timer) {
clearTimeout(timer);
timer = null;
}
// 设置定时器,使事件间隔指定事件后执行
timer = setTimeout(() => {
fn.apply(context, args);
}, wait);
};
}函数节流的实现:
// 时间戳版
function throttle(fn, delay) {
var preTime = Date.now();
return function() {
var context = this,
args = [...arguments],
nowTime = Date.now();
// 如果两次时间间隔超过了指定时间,则执行函数。
if (nowTime - preTime >= delay) {
preTime = Date.now();
return fn.apply(context, args);
}
};
}
// 定时器版
function throttle (fun, wait){
let timeout = null
return function(){
let context = this
let args = [...arguments]
if(!timeout){
timeout = setTimeout(() => {
fun.apply(context, args)
timeout = null
}, wait)
}
}
}Promise对象代表一个异步操作,有三种状态:pending(进行中)、fulfilled(已成功)和rejected(已失败)。
Promise构造函数接受一个函数作为参数,该函数的两个参数分别是resolve和reject。
const promise = new Promise(function(resolve, reject) {
// ... some code
if (/* 异步操作成功 */){
resolve(value);
} else {
reject(error);
}
});一般情况下都会使用new Promise()来创建promise对象,但是也可以使用promise.resolve和promise.reject这两个方法:
Promise.resolve(value)的返回值也是一个promise对象,可以对返回值进行.then调用,代码如下:
Promise.resolve(11).then(function(value){
console.log(value); // 打印出11
});resolve(11)代码中,会让promise对象进入确定(resolve状态),并将参数11传递给后面的then所指定的onFulfilled 函数;
创建promise对象可以使用new Promise的形式创建对象,也可以使用Promise.resolve(value)的形式创建promise对象;
Promise.reject 也是new Promise的快捷形式,也创建一个promise对象。代码如下:
Promise.reject(new Error(“我错了,请原谅俺!!”));就是下面的代码new Promise的简单形式:
new Promise(function(resolve,reject){
reject(new Error("我错了!"));
});下面是使用resolve方法和reject方法:
function testPromise(ready) {
return new Promise(function(resolve,reject){
if(ready) {
resolve("hello world");
}else {
reject("No thanks");
}
});
};
// 方法调用
testPromise(true).then(function(msg){
console.log(msg);
},function(error){
console.log(error);
});上面的代码的含义是给testPromise方法传递一个参数,返回一个promise对象,如果为true的话,那么调用promise对象中的resolve()方法,并且把其中的参数传递给后面的then第一个函数内,因此打印出 “hello world”, 如果为false的话,会调用promise对象中的reject()方法,则会进入then的第二个函数内,会打印No thanks;
Promise有五个常用的方法:then()、catch()、all()、race()、finally。下面就来看一下这些方法。
当Promise执行的内容符合成功条件时,调用resolve函数,失败就调用reject函数。Promise创建完了,那该如何调用呢?
promise.then(function(value) {
// success
}, function(error) {
// failure
});then方法可以接受两个回调函数作为参数。第一个回调函数是Promise对象的状态变为resolved时调用,第二个回调函数是Promise对象的状态变为rejected时调用。其中第二个参数可以省略。 then方法返回的是一个新的Promise实例(不是原来那个Promise实例)。因此可以采用链式写法,即then方法后面再调用另一个then方法。
当要写有顺序的异步事件时,需要串行时,可以这样写:
let promise = new Promise((resolve,reject)=>{
ajax('first').success(function(res){
resolve(res);
})
})
promise.then(res=>{
return new Promise((resovle,reject)=>{
ajax('second').success(function(res){
resolve(res)
})
})
}).then(res=>{
return new Promise((resovle,reject)=>{
ajax('second').success(function(res){
resolve(res)
})
})
}).then(res=>{
})那当要写的事件没有顺序或者关系时,还如何写呢?可以使用all 方法来解决。
2. catch()
Promise对象除了有then方法,还有一个catch方法,该方法相当于then方法的第二个参数,指向reject的回调函数。不过catch方法还有一个作用,就是在执行resolve回调函数时,如果出现错误,抛出异常,不会停止运行,而是进入catch方法中。
p.then((data) => {
console.log('resolved',data);
},(err) => {
console.log('rejected',err);
}
);
p.then((data) => {
console.log('resolved',data);
}).catch((err) => {
console.log('rejected',err);
});3. all()
all方法可以完成并行任务, 它接收一个数组,数组的每一项都是一个promise对象。当数组中所有的promise的状态都达到resolved的时候,all方法的状态就会变成resolved,如果有一个状态变成了rejected,那么all方法的状态就会变成rejected。
javascript
let promise1 = new Promise((resolve,reject)=>{
setTimeout(()=>{
resolve(1);
},2000)
});
let promise2 = new Promise((resolve,reject)=>{
setTimeout(()=>{
resolve(2);
},1000)
});
let promise3 = new Promise((resolve,reject)=>{
setTimeout(()=>{
resolve(3);
},3000)
});
Promise.all([promise1,promise2,promise3]).then(res=>{
console.log(res);
//结果为:[1,2,3]
})调用all方法时的结果成功的时候是回调函数的参数也是一个数组,这个数组按顺序保存着每一个promise对象resolve执行时的值。
(4)race()
race方法和all一样,接受的参数是一个每项都是promise的数组,但是与all不同的是,当最先执行完的事件执行完之后,就直接返回该promise对象的值。如果第一个promise对象状态变成resolved,那自身的状态变成了resolved;反之第一个promise变成rejected,那自身状态就会变成rejected。
let promise1 = new Promise((resolve,reject)=>{
setTimeout(()=>{
reject(1);
},2000)
});
let promise2 = new Promise((resolve,reject)=>{
setTimeout(()=>{
resolve(2);
},1000)
});
let promise3 = new Promise((resolve,reject)=>{
setTimeout(()=>{
resolve(3);
},3000)
});
Promise.race([promise1,promise2,promise3]).then(res=>{
console.log(res);
//结果:2
},rej=>{
console.log(rej)};
)那么race方法有什么实际作用呢?当要做一件事,超过多长时间就不做了,可以用这个方法来解决:
Promise.race([promise1,timeOutPromise(5000)]).then(res=>{})5. finally()
finally方法用于指定不管 Promise 对象最后状态如何,都会执行的操作。该方法是 ES2018 引入标准的。
promise
.then(result => {···})
.catch(error => {···})
.finally(() => {···});上面代码中,不管promise最后的状态,在执行完then或catch指定的回调函数以后,都会执行finally方法指定的回调函数。
下面是一个例子,服务器使用 Promise 处理请求,然后使用finally方法关掉服务器。
server.listen(port)
.then(function () {
// ...
})
.finally(server.stop);finally方法的回调函数不接受任何参数,这意味着没有办法知道,前面的 Promise 状态到底是fulfilled还是rejected。这表明,finally方法里面的操作,应该是与状态无关的,不依赖于 Promise 的执行结果。finally本质上是then方法的特例:
promise
.finally(() => {
// 语句
});
// 等同于
promise
.then(
result => {
// 语句
return result;
},
error => {
// 语句
throw error;
}
);上面代码中,如果不使用finally方法,同样的语句需要为成功和失败两种情况各写一次。有了finally方法,则只需要写一次。
尾调用指的是函数的最后一步调用另一个函数。代码执行是基于执行栈的,所以当在一个函数里调用另一个函数时,会保留当前的执行上下文,然后再新建另外一个执行上下文加入栈中。使用尾调用的话,因为已经是函数的最后一步,所以这时可以不必再保留当前的执行上下文,从而节省了内存,这就是尾调用优化。但是 ES6 的尾调用优化只在严格模式下开启,正常模式是无效的。
事件是用户操作网页时发生的交互动作,比如 click/move, 事件除了用户触发的动作外,还可以是文档加载,窗口滚动和大小调整。事件被封装成一个 event 对象,包含了该事件发生时的所有相关信息( event 的属性)以及可以对事件进行的操作( event 的方法)。
事件是用户操作网页时发生的交互动作或者网页本身的一些操作,现代浏览器一共有三种事件模型:
(1)全局执行上下文
任何不在函数内部的都是全局执行上下文,它首先会创建一个全局的window对象,并且设置this的值等于这个全局对象,一个程序中只有一个全局执行上下文。
(2)函数执行上下文
当一个函数被调用时,就会为该函数创建一个新的执行上下文,函数的上下文可以有任意多个。
(3)eval函数执行上下文
执行在eval函数中的代码会有属于他自己的执行上下文,不过eval函数不常使用,不做介绍。
let a = 'Hello World!';
function first() {
console.log('Inside first function');
second();
console.log('Again inside first function');
}
function second() {
console.log('Inside second function');
}
first();
//执行顺序
//先执行second(),在执行first()创建执行上下文有两个阶段:创建阶段和执行阶段
1)创建阶段
(1)this绑定
(2)创建词法环境组件
(3)创建变量环境组件
2)执行阶段 此阶段会完成对变量的分配,最后执行完代码。
简单来说执行上下文就是指:
在执行一点JS代码之前,需要先解析代码。解析的时候会先创建一个全局执行上下文环境,先把代码中即将执行的变量、函数声明都拿出来,变量先赋值为undefined,函数先声明好可使用。这一步执行完了,才开始正式的执行程序。
在一个函数执行之前,也会创建一个函数执行上下文环境,跟全局执行上下文类似,不过函数执行上下文会多出this、arguments和函数的参数。
this,arguments// call
Function.prototype.call = function (context, ...args) {
context = context || window;
const fnSymbol = Symbol("fn");
context[fnSymbol] = this;
context[fnSymbol](...args);
delete context[fnSymbol];
}// apply
Function.prototype.apply = function (context, argsArr) {
context = context || window;
const fnSymbol = Symbol("fn");
context[fnSymbol] = this;
context[fnSymbol](...argsArr);
delete context[fnSymbol];
}// bind
Function.prototype.bind = function (context, ...args) {
context = context || window;
const fnSymbol = Symbol("fn");
context[fnSymbol] = this;
return function (..._args) {
args = args.concat(_args);
context[fnSymbol](...args);
delete context[fnSymbol];
}
}扩展运算符被用在函数形参上时,它还可以把一个分离的参数序列整合成一个数组:
function mutiple(...args) {
let result = 1;
for (var val of args) {
result *= val;
}
return result;
}
mutiple(1, 2, 3, 4) // 24这里,传入 mutiple 的是四个分离的参数,但是如果在 mutiple 函数里尝试输出 args 的值,会发现它是一个数组:
function mutiple(...args) {
console.log(args)
}
mutiple(1, 2, 3, 4) // [1, 2, 3, 4]这就是 … rest运算符的又一层威力了,它可以把函数的多个入参收敛进一个数组里。这一点经常用于获取函数的多余参数,或者像上面这样处理函数参数个数不确定的情况。
function Person(name) {
this.name = name
}
// 修改原型
Person.prototype.getName = function() {}
var p = new Person('hello')
console.log(p.__proto__ === Person.prototype) // true
console.log(p.__proto__ === p.constructor.prototype) // true
// 重写原型
Person.prototype = {
getName: function() {}
}
var p = new Person('hello')
console.log(p.__proto__ === Person.prototype) // true
console.log(p.__proto__ === p.constructor.prototype) // false可以看到修改原型的时候p的构造函数不是指向Person了,因为直接给Person的原型对象直接用对象赋值时,它的构造函数指向的了根构造函数Object,所以这时候p.constructor === Object ,而不是p.constructor === Person。要想成立,就要用constructor指回来:
Person.prototype = {
getName: function() {}
}
var p = new Person('hello')
p.constructor = Person
console.log(p.__proto__ === Person.prototype) // true
console.log(p.__proto__ === p.constructor.prototype) // true两者对比:强类型语言在速度上可能略逊色于弱类型语言,但是强类型语言带来的严谨性可以有效地帮助避免许多错误。
new操作符的执行过程:
(1)首先创建了一个新的空对象
(2)设置原型,将对象的原型设置为函数的 prototype 对象。
(3)让函数的 this 指向这个对象,执行构造函数的代码(为这个新对象添加属性)
(4)判断函数的返回值类型,如果是值类型,返回创建的对象。如果是引用类型,就返回这个引用类型的对象。
具体实现:
function objectFactory() {
let newObject = null;
let constructor = Array.prototype.shift.call(arguments);
let result = null;
// 判断参数是否是一个函数
if (typeof constructor !== "function") {
console.error("type error");
return;
}
// 新建一个空对象,对象的原型为构造函数的 prototype 对象
newObject = Object.create(constructor.prototype);
// 将 this 指向新建对象,并执行函数
result = constructor.apply(newObject, arguments);
// 判断返回对象
let flag = result && (typeof result === "object" || typeof result === "function");
// 判断返回结果
return flag ? result : newObject;
}
// 使用方法
objectFactory(构造函数, 初始化参数);fn.length 是个不变的常数)// 写法1-不保存参数,递归局部函数
function curry(fn) {
let judge = (...args) => {
// 递归结束条件
if(args.length === fn.length) return fn(...args);
return (...arg) => judge(...args, ...arg);
}
return judge;
}
// 写法2-保存参数,递归整体函数
function curry(fn) {
// 保存参数,除去第一个函数参数
let presentArgs = [].slice.call(arguments, 1);
// 返回一个新函数
return function(){
// 新函数调用时会继续传参
let allArgs = [...presentArgs, ...arguments];
// 递归结束条件
if(allArgs.length === fn.length) {
// 如果参数够了,就执行原函数
return fn(,,,allArgs);
}
// 否则继续柯里化
else return curry(fn, ...allArgs);
}
}
// 测试
function add(a, b, c, d) {
return a + b + c + d;
}
console.log(add(1, 2, 3, 4));
let addCurry = curry(add);
// 以下结果都返回 10
console.log(addCurry(1)(2)(3)(4));
console.log(addCurry(1)(2, 3, 4));
console.log(addCurry(1, 2)(3)(4));
console.log(addCurry(1, 2)(3, 4));
console.log(addCurry(1, 2, 3)(4));
console.log(addCurry(1, 2, 3, 4));题目描述:有一组版本号如下'0.1.1', '2.3.3', '0.302.1', '4.2', '4.3.5', '4.3.4.5'。现在需要对其进行排序,排序的结果为 '4.3.5','4.3.4.5','2.3.3','0.302.1','0.1.1'
实现代码如下:
arr.sort((a, b) => {
let i = 0;
const arr1 = a.split(".");
const arr2 = b.split(".");
while (true) {
const s1 = arr1[i];
const s2 = arr2[i];
i++;
if (s1 === undefined || s2 === undefined) {
return arr2.length - arr1.length;
}
if (s1 === s2) continue;
return s2 - s1;
}
});
console.log(arr);可以把执行栈认为是一个存储函数调用的栈结构,遵循先进后出的原则。 当开始执行 JS 代码时,根据先进后出的原则,后执行的函数会先弹出栈,可以看到,foo 函数后执行,当执行完毕后就从栈中弹出了。
平时在开发中,可以在报错中找到执行栈的痕迹:
function foo() {
throw new Error('error')
}
function bar() {
foo()
}
bar() 可以看到报错在 foo 函数,foo 函数又是在 bar 函数中调用的。当使用递归时,因为栈可存放的函数是有限制的,一旦存放了过多的函数且没有得到释放的话,就会出现爆栈的问题
function bar() { bar()}bar()原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。