前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >不依赖yacc如何实现表达式按优先级解析

不依赖yacc如何实现表达式按优先级解析

作者头像
mingjie
发布2023-10-13 10:27:57
2130
发布2023-10-13 10:27:57
举报

总结

无意发现一个非常有意思的简单语法解析器,不依赖lex/yacc,本文对其中比较难理解的表达式解析(带优先级)部分做一些分析和记录。

(理解本文需要调试后面的代码部分,have fun!)

理解表达式解析部分

这段代码的功能是解析a+b+(c+d)*e*f+g;,包含符号优先级处理的功能。

代码语言:javascript
复制
static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
  // If this is a binop, find its precedence.
  while (1) {
    int TokPrec = GetTokPrecedence();

    // If this is a binop that binds at least as tightly as the current binop,
    // consume it, otherwise we are done.
    if (TokPrec < ExprPrec)
      return LHS;

    // Okay, we know this is a binop.
    int BinOp = CurTok;
    getNextToken();  // eat binop

    // Parse the primary expression after the binary operator.
    ExprAST *RHS = ParsePrimary();
    if (!RHS) return 0;

    // If BinOp binds less tightly with RHS than the operator after RHS, let
    // the pending operator take RHS as its LHS.
    int NextPrec = GetTokPrecedence();
    if (TokPrec < NextPrec) {
      RHS = ParseBinOpRHS(TokPrec+1, RHS);
      if (RHS == 0) return 0;
    }

    // Merge LHS/RHS.
    LHS = new BinaryExprAST(BinOp, LHS, RHS);
  }
}

解析流程:

  1. 解析:a+b+(c+d)*e*f+g;
  2. 进入函数时,ExprPrec为0,LHS是a。
  3. 第一轮:解析+b
    1. TokPrec < ExprPrec 即 20 < 0:不退出递归
    2. TokPrec < NextPrec 即 20 < 20:不进入递归
    3. 符号+、RHS=b被合入LHS=a,LHS变为a+b
  4. 第二轮:解析+(c+d)
    1. TokPrec < ExprPrec 即 20 < 0:不退出递归
    2. TokPrec < NextPrec 即 20 < 40:进入递归,当前RHS=(c+d)、符号为+
      1. 递归ParseBinOpRHS第一轮:当前LHS被设为外面的RHS=(c+d)也就是(c+d)被当做后面乘号的左值了。
        1. 解析*e
        2. 进入后ExprPrec=21(因为加1后面在遇到+可以退出递归,后面在遇到比加号高的不会退出递归,很巧妙的做法),TokPrec < ExprPrec 即 40 < 21:不进入
        3. TokPrec < NextPrec 即 40 < 40:不退出递归
        4. 符号*、RHS=e被合入LHS=(c+d),LHS变为(c+d)*e
      2. 递归ParseBinOpRHS第二轮:当前LHS变为(c+d)*e、符号为*
        1. TokPrec < ExprPrec 即 40 < 21:不退出递归
        2. TokPrec < NextPrec即 40 < 20:不进入递归
        3. 符号*、RHS=f被合入LHS=(c+d)*e,LHS变为(c+d)*e*f
      3. 递归ParseBinOpRHS第三轮:当前LHS变为(c+d)*e*f、符号为+
        1. TokPrec < ExprPrec 即 20 < 21:退出递归!(非常重要)
        2. 返回(c+d)*e*f
    3. 外层还在处理第二个加号,通过递归得到RHS=(c+d)*e*f
    4. 合并+、LHS=a+b、RHS=(c+d)*e*f得到:a+b+(c+d)*e*f
  5. 第三轮:解析+g
    1. TokPrec < ExprPrec 即 20 < 0:不退出递归
    2. TokPrec < NextPrec 即 20 < 20:不进入递归
    3. 符号+、RHS=g被合入LHS=a+b+(c+d)*e*f,LHS变为a+b+(c+d)*e*f+g

解析流程总结:

a+b+(c+d)*e*f+g;的解析过程分了三部分,循环一次解析一组,一组的定义是:【符号+数字】或【符号+(表达式)】,也就是{+b}{+(c+d)}{*e}{*f}{+g},解析每一组的时候,都是不断把rhs拼入lhs的过程,rhs到底是什么,需要判断是否递归解析,比如前面是+b+(c+d)*e,在解析第二个加号的时候,rhs就不能是(c+d)了,需要递归的把后面乘号也解了,rhs应该是(c+d)*e*f

三步解析:

  1. (外侧函数解析a)
  2. 解析+b
  3. 递归解析+(c+d)ef
  4. 解析+g

整个解析流程就是不断把RHS拼到LHS中,最终返回LHS的过程。

中间比较重要的就是乘号和+号的优先级问题,上述代码中,进入递归的含义为:把优先级高于当前符号的所有后续表达式一块解析出来,直到遇到当前符号为止,那么这里就涉及递归进入条件和递归退出条件了:

  • 递归进入条件:遇到的符号优先级比上一个符号高:if (TokPrec < NextPrec)
  • 递归退出条件:遇到的符号优先级和上一个符号相同:if (TokPrec < ExprPrec)

假设当前符号为+遇到*后,TokPrec=20、NextPrec=40会进入递归。 假设当前符号为*遇到+后,TokPrec=20、ExprPrec=21会退出递归,而遇到*的话ExprPrec=40无法退出递归,代码比较巧妙,不容易理解。

语法解析器

gcc或clang编译均可,下面makefile是clang的。

main.c

代码语言:javascript
复制
#include <cstdio>
#include <cstdlib>
#include <string>
#include <map>
#include <vector>
/*
 * def foo(x y) x+foo(y, 4.0);
 * 
 * def foo(x y) x+y y;
 * 
 * def foo(x y) x+y );
 * 
 * extern sin(a);
 *
 * def foo(x y) a+b+(c+d)*e*f+g;
 */

//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//

// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
  tok_eof = -1,

  // commands
  tok_def = -2, tok_extern = -3,

  // primary
  tok_identifier = -4, tok_number = -5
};

static std::string IdentifierStr;  // Filled in if tok_identifier
static double NumVal;              // Filled in if tok_number

/// gettok - Return the next token from standard input.
static int gettok() {
  static int LastChar = ' ';

  // Skip any whitespace.
  while (isspace(LastChar))
    LastChar = getchar();

  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
    IdentifierStr = LastChar;
    while (isalnum((LastChar = getchar())))
      IdentifierStr += LastChar;

    if (IdentifierStr == "def") return tok_def;
    if (IdentifierStr == "extern") return tok_extern;
    return tok_identifier;
  }

  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
    std::string NumStr;
    do {
      NumStr += LastChar;
      LastChar = getchar();
    } while (isdigit(LastChar) || LastChar == '.');

    NumVal = strtod(NumStr.c_str(), 0);
    return tok_number;
  }

  if (LastChar == '#') {
    // Comment until end of line.
    do LastChar = getchar();
    while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');

    if (LastChar != EOF)
      return gettok();
  }

  // Check for end of file.  Don't eat the EOF.
  if (LastChar == EOF)
    return tok_eof;

  // Otherwise, just return the character as its ascii value.
  int ThisChar = LastChar;
  LastChar = getchar();
  return ThisChar;
}

//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//

/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:
  virtual ~ExprAST() {}
};

/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
  double Val;
public:
  NumberExprAST(double val) : Val(val) {}
};

/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
  std::string Name;
public:
  VariableExprAST(const std::string &name) : Name(name) {}
};

/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
  char Op;
  ExprAST *LHS, *RHS;
public:
  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
    : Op(op), LHS(lhs), RHS(rhs) {}
};

/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
  std::string Callee;
  std::vector<ExprAST*> Args;
public:
  CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
    : Callee(callee), Args(args) {}
};

/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its name, and its argument names (thus implicitly the number
/// of arguments the function takes).
class PrototypeAST {
  std::string Name;
  std::vector<std::string> Args;
public:
  PrototypeAST(const std::string &name, const std::vector<std::string> &args)
    : Name(name), Args(args) {}

};

/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
  PrototypeAST *Proto;
  ExprAST *Body;
public:
  FunctionAST(PrototypeAST *proto, ExprAST *body)
    : Proto(proto), Body(body) {}

};

//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//

/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
/// token the parser is looking at.  getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() {
  return CurTok = gettok();
}

/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;

/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
  if (!isascii(CurTok))
    return -1;

  // Make sure it's a declared binop.
  int TokPrec = BinopPrecedence[CurTok];
  if (TokPrec <= 0) return -1;
  return TokPrec;
}

/// Error* - These are little helper functions for error handling.
ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }

static ExprAST *ParseExpression();

/// identifierexpr
///   ::= identifier
///   ::= identifier '(' expression* ')'
static ExprAST *ParseIdentifierExpr() {
  std::string IdName = IdentifierStr;

  getNextToken();  // eat identifier.

  if (CurTok != '(') // Simple variable ref.
    return new VariableExprAST(IdName);

  // Call.
  getNextToken();  // eat (
  std::vector<ExprAST*> Args;
  if (CurTok != ')') {
    while (1) {
      ExprAST *Arg = ParseExpression();
      if (!Arg) return 0;
      Args.push_back(Arg);

      if (CurTok == ')') break;

      if (CurTok != ',')
        return Error("Expected ')' or ',' in argument list");
      getNextToken();
    }
  }

  // Eat the ')'.
  getNextToken();

  return new CallExprAST(IdName, Args);
}

/// numberexpr ::= number
static ExprAST *ParseNumberExpr() {
  ExprAST *Result = new NumberExprAST(NumVal);
  getNextToken(); // consume the number
  return Result;
}

/// parenexpr ::= '(' expression ')'
static ExprAST *ParseParenExpr() {
  getNextToken();  // eat (.
  ExprAST *V = ParseExpression();
  if (!V) return 0;

  if (CurTok != ')')
    return Error("expected ')'");
  getNextToken();  // eat ).
  return V;
}

/// primary
///   ::= identifierexpr
///   ::= numberexpr
///   ::= parenexpr
static ExprAST *ParsePrimary() {
  switch (CurTok) {
  default: return Error("unknown token when expecting an expression");
  case tok_identifier: return ParseIdentifierExpr();
  case tok_number:     return ParseNumberExpr();
  case '(':            return ParseParenExpr();
  }
}

/// binoprhs
///   ::= ('+' primary)*
// 函数ParseBinOpRHS用于解析有序对列表(其中RHS是Right Hand Side的缩写,表示“右侧”;与此相对应,LHS表示“左侧”——译者注)。
// 它的参数包括一个整数和一个指针,其中整数代表运算符优先级,指针则指向当前已解析出来的那部分表达式。注意,单独一个“x”也是合法的表达式:
// 也就是说binoprhs有可能为空;碰到这种情况时,函数将直接返回作为参数传入的表达式。在上面的例子中,传入ParseBinOpRHS的表达式是“a”,当前语元是“+”。
// 传入ParseBinOpRHS的优先级表示的是该函数所能处理的最低运算符优先级。假设语元流中的下一对是“[+, x]”,且传入ParseBinOpRHS的优先级是40,
// 那么该函数将直接返回(因为“+”的优先级是20)。搞清楚这一点之后,我们再来看ParseBinOpRHS的定义,函数的开头是这样的:

// a+b+(c+d)*e*f+g
// a    [+, b]、[+, (c+d)]、[*, e]、[*, f]和[+, g]
static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
  // If this is a binop, find its precedence.
  while (1) {
    int TokPrec = GetTokPrecedence();

    // If this is a binop that binds at least as tightly as the current binop,
    // consume it, otherwise we are done.
    if (TokPrec < ExprPrec)
      return LHS;

    // Okay, we know this is a binop.
    int BinOp = CurTok;
    getNextToken();  // eat binop

    // Parse the primary expression after the binary operator.
    ExprAST *RHS = ParsePrimary();
    if (!RHS) return 0;

    // If BinOp binds less tightly with RHS than the operator after RHS, let
    // the pending operator take RHS as its LHS.
    int NextPrec = GetTokPrecedence();
    if (TokPrec < NextPrec) {
      RHS = ParseBinOpRHS(TokPrec+1, RHS);
      if (RHS == 0) return 0;
    }

    // Merge LHS/RHS.
    LHS = new BinaryExprAST(BinOp, LHS, RHS);
  }
}

/// expression
///   ::= primary binoprhs
///
// def foo(x y) x+y y;
// 这里开始解析x+y部分:
static ExprAST *ParseExpression() {
  ExprAST *LHS = ParsePrimary();
  if (!LHS) return 0;

  return ParseBinOpRHS(0, LHS);
}

/// prototype
///   ::= id '(' id* ')'
static PrototypeAST *ParsePrototype() {
  if (CurTok != tok_identifier)
    return ErrorP("Expected function name in prototype");

  std::string FnName = IdentifierStr;
  getNextToken();

  if (CurTok != '(')
    return ErrorP("Expected '(' in prototype");

  std::vector<std::string> ArgNames;
  while (getNextToken() == tok_identifier)
    ArgNames.push_back(IdentifierStr);
  if (CurTok != ')')
    return ErrorP("Expected ')' in prototype");

  // success.
  getNextToken();  // eat ')'.

  return new PrototypeAST(FnName, ArgNames);
}

/// definition ::= 'def' prototype expression
static FunctionAST *ParseDefinition() {
  getNextToken();  // eat def.
  PrototypeAST *Proto = ParsePrototype();
  if (Proto == 0) return 0;

  if (ExprAST *E = ParseExpression())
    return new FunctionAST(Proto, E);
  return 0;
}

/// toplevelexpr ::= expression
static FunctionAST *ParseTopLevelExpr() {
  if (ExprAST *E = ParseExpression()) {
    // Make an anonymous proto.
    PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
    return new FunctionAST(Proto, E);
  }
  return 0;
}

/// external ::= 'extern' prototype
static PrototypeAST *ParseExtern() {
  getNextToken();  // eat extern.
  return ParsePrototype();
}

//===----------------------------------------------------------------------===//
// Top-Level parsing
//===----------------------------------------------------------------------===//

static void HandleDefinition() {
  if (ParseDefinition()) {
    fprintf(stderr, "Parsed a function definition.\n");
  } else {
    // Skip token for error recovery.
    getNextToken();
  }
}

static void HandleExtern() {
  if (ParseExtern()) {
    fprintf(stderr, "Parsed an extern\n");
  } else {
    // Skip token for error recovery.
    getNextToken();
  }
}

static void HandleTopLevelExpression() {
  // Evaluate a top-level expression into an anonymous function.
  if (ParseTopLevelExpr()) {
    fprintf(stderr, "Parsed a top-level expr\n");
  } else {
    // Skip token for error recovery.
    getNextToken();
  }
}

/// top ::= definition | external | expression | ';'
static void MainLoop() {
  while (1) {
    fprintf(stderr, "ready> ");
    switch (CurTok) {
    case tok_eof:    return;
    case ';':        getNextToken(); break;  // ignore top-level semicolons.
    case tok_def:    HandleDefinition(); break;
    case tok_extern: HandleExtern(); break;
    default:         HandleTopLevelExpression(); break;
    }
  }
}

//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//

int main() {
  // Install standard binary operators.
  // 1 is lowest precedence.
  BinopPrecedence['<'] = 10;
  BinopPrecedence['+'] = 20;
  BinopPrecedence['-'] = 20;
  BinopPrecedence['*'] = 40;  // highest.

  // Prime the first token.
  fprintf(stderr, "ready> ");
  getNextToken();

  // Run the main "interpreter loop" now.
  MainLoop();

  return 0;
}

Makefile

代码语言:javascript
复制
CC = llvm-g++ -stdlib=libc++ -std=c++14
CFLAGS = -g -O0 -I llvm/include -I llvm/build/include -I ./
LLVMFLAGS = `llvm-config --cxxflags --ldflags --system-libs --libs all`

.PHONY: main

main: main.cpp
	${CC} ${CFLAGS} ${LLVMFLAGS} $< -o $@

clean:
	rm -r main main.o

%.o: %.cpp
	${CC} ${CFLAGS} ${LLVMFLAGS} -c $< -o $@
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2023-07-20,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 总结
  • 理解表达式解析部分
  • 语法解析器
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档