本篇博客将讨论力扣经典150题中的买卖股票的最佳时机问题。给定一个数组 prices,其中第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格,我们需要设计一个算法来计算最大利润。
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
示例 1:
输入:[7,1,5,3,6,4] 输出:5 解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。 注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。 示例 2:
输入:prices = [7,6,4,3,1] 输出:0 解释:在这种情况下, 没有交易完成, 所以最大利润为 0。
提示:
1 <= prices.length <= 105 0 <= prices[i] <= 104
利用一次遍历的方法,遍历股票价格数组,同时记录当前最低买入价格和最大利润。
minPrice 记录当前遍历过的最低股票价格。maxProfit 记录当前最大利润。minPrice 和 maxProfit。利用动态规划的思想,定义状态 dp[i] 表示第 i 天的最大利润。
dp[0] = 0,表示第一天无利润。dp[i] = max(dp[i-1], prices[i] - minPrice),其中 minPrice 表示前 i-1 天的最低股票价格。public int maxProfit(int[] prices) {
int minPrice = Integer.MAX_VALUE;
int maxProfit = 0;
for (int price : prices) {
if (price < minPrice) {
minPrice = price;
} else if (price - minPrice > maxProfit) {
maxProfit = price - minPrice;
}
}
return maxProfit;
}public int maxProfit(int[] prices) {
int n = prices.length;
if (n == 0) {
return 0;
}
int minPrice = prices[0];
int maxProfit = 0;
for (int i = 1; i < n; i++) {
minPrice = Math.min(minPrice, prices[i]);
maxProfit = Math.max(maxProfit, prices[i] - minPrice);
}
return maxProfit;
}我们使用示例输入进行测试,并验证算法的正确性:
int[] prices1 = {7, 1, 5, 3, 6, 4};
int[] prices2 = {7, 6, 4, 3, 1};
System.out.println("Test Case 1:");
System.out.println("Expected Result: 5");
System.out.println("Actual Result: " + maxProfit(prices1));
System.out.println("Test Case 2:");
System.out.println("Expected Result: 0");
System.out.println("Actual Result: " + maxProfit(prices2));输出结果为:
Test Case 1:
Expected Result: 5
Actual Result: 5
Test Case 2:
Expected Result: 0
Actual Result: 0通过本篇博客,我们详细讨论了力扣经典150题中的买卖股票的最佳时机问题,并提供了两种解题方法的实现。这些方法都具有高效性和简洁性,在实际应用中具有广泛的适用性。
希望本文能够帮助大家更好地理解和掌握买卖股票的最佳时机的解题思路和实现方法,欢迎提出您的宝贵意见和建议。