首页
学习
活动
专区
工具
TVP
发布
社区首页 >问答首页 >单精度浮点数的距离缩小精度差

单精度浮点数的距离缩小精度差
EN

Stack Overflow用户
提问于 2012-02-24 08:14:32
回答 1查看 2.5K关注 0票数 16

我正在尝试实现范围缩减作为实现正弦函数的第一步。

我正在遵循论文"ARGUMENT REDUCTION FOR HUGE ARGUMENTS" by K.C. NG中描述的方法。

当使用从0到20000的输入范围时,我得到的误差高达0.002339146。我的错误显然不应该那么大,我不确定如何才能减少它。我注意到误差大小与余弦/正弦的输入θ大小有关。

我能够获得论文中提到的nearpi.c代码,但我不确定如何将该代码用于单精度浮点运算。如果任何人感兴趣,可以在以下链接中找到nearpi.c文件:nearpi.c

下面是我的MATLAB代码:

代码语言:javascript
复制
x = 0:0.1:20000;

% Perform range reduction
% Store constant 2/pi
twooverpi = single(2/pi);

% Compute y
y = (x.*twooverpi);

% Compute k (round to nearest integer
k = round(y);

% Solve for f
f = single(y-k);

% Solve for r
r = single(f*single(pi/2));

% Find last two bits of k
n = bitand(fi(k,1,32,0),fi(3,1,32,0));
n = single(n);

% Preallocate for speed
z(length(x)) = 0;
for i = 1:length(x)

    switch(n(i))
        case 0
            z(i)=sin(r(i));
        case 1
            z(i) = single(cos(r(i)));
        case 2
            z(i) = -sin(r(i));
        case 3
            z(i) = single(-cos(r(i)));
        otherwise
    end

end

maxerror = max(abs(single(z - single(sin(single(x))))))
minerror = min(abs(single(z - single(sin(single(x))))))

我已经在pi.c附近编辑了程序,这样它就可以编译了。然而,我不确定如何解释输出。此外,该文件要求输入,我必须手动输入,而且我也不确定输入的意义。

下面是工作的nearpi.c:

代码语言:javascript
复制
/*
 ============================================================================
 Name        : nearpi.c
 Author      : 
 Version     :
 Copyright   : Your copyright notice
 Description : Hello World in C, Ansi-style
 ============================================================================
 */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>


/*
 * Global macro definitions.
 */

# define hex( double )  *(1 + ((long *) &double)), *((long *) &double)
# define sgn(a)         (a >= 0 ? 1 : -1)
# define MAX_k          2500
# define D              56
# define MAX_EXP        127
# define THRESHOLD      2.22e-16

/*
 *  Global Variables
 */

int     CFlength,               /* length of CF including terminator */
        binade;
double  e,
        f;                      /* [e,f] range of D-bit unsigned int of f;
                                   form 1X...X */

// Function Prototypes
int dbleCF (double i[], double j[]);
void input (double i[]);
void nearPiOver2 (double i[]);


/*
 *  This is the start of the main program.
 */

int main (void)
{
    int     k;                  /* subscript variable */
    double  i[MAX_k],
            j[MAX_k];           /* i and j are continued fractions
                                   (coeffs) */


   // fp = fopen("/src/cfpi.txt", "r");


/*
 *  Compute global variables e and f, where
 *
 *      e = 2 ^ (D-1), i.e. the D bit number 10...0
 *  and
 *      f = 2 ^ D - 1, i.e. the D bit number 11...1  .
 */

    e = 1;
    for (k = 2; k <= D; k = k + 1)
        e = 2 * e;
    f = 2 * e - 1;

 /*
  *  Compute the continued fraction for  (2/e)/(pi/2)  , i.e.
  *  q's starting value for the first binade, given the continued
  *  fraction for  pi  as input; set the global variable CFlength
  *  to the length of the resulting continued fraction (including
  *  its negative valued terminator).  One should use as many
  *  partial coefficients of  pi  as necessary to resolve numbers
  *  of the width of the underflow plus the overflow threshold.
  *  A rule of thumb is 0.97 partial coefficients are generated
  *  for every decimal digit of  pi .
  *
  *  Note: for radix B machines, subroutine  input  should compute
  *  the continued fraction for  (B/e)/(pi/2)  where  e = B ^ (D - 1).
  */

    input (i);

/*
 *  Begin main loop over all binades:
 *  For each binade, find the nearest multiples of pi/2 in that binade.
 *
 *  [ Note: for hexadecimal machines ( B = 16 ), the rest of the main
 *  program simplifies(!) to
 *
 *                      B_ade = 1;
 *                      while (B_ade < MAX_EXP)
 *                      {
 *                          dbleCF (i, j);
 *                          dbleCF (j, i);
 *                          dbleCF (i, j);
 *                          CFlength = dbleCF (j, i);
 *                          B_ade = B_ade + 1;
 *                      }
 *                  }
 *
 *  because the alternation of source & destination are no longer necessary. ]
 */

    binade = 1;
    while (binade < MAX_EXP)
    {

/*
 *  For the current (odd) binade, find the nearest multiples of pi/2.
 */

        nearPiOver2 (i);

/*
 *  Double the continued fraction to get to the next (even) binade.
 *  To save copying arrays, i and j will alternate as the source
 *  and destination for the continued fractions.
 */

        CFlength = dbleCF (i, j);
        binade = binade + 1;

/*
 *  Check for main loop termination again because of the
 *  alternation.
 */

        if (binade >= MAX_EXP)
            break;

/*
 *  For the current (even) binade, find the nearest multiples of pi/2.
 */

        nearPiOver2 (j);

/*
 *  Double the continued fraction to get to the next (odd) binade.
 */

        CFlength = dbleCF (j, i);
        binade = binade + 1;
    }

    return 0;
}                               /* end of Main Program */

/*
 *  Subroutine  DbleCF  doubles a continued fraction whose partial
 *  coefficients are i[] into a continued fraction j[], where both
 *  arrays are of a type sufficient to do D-bit integer arithmetic.
 *
 *  In my case ( D = 56 ) , I am forced to treat integers as double
 *  precision reals because my machine does not have integers of
 *  sufficient width to handle D-bit integer arithmetic.
 *
 *  Adapted from a Basic program written by W. Kahan.
 *
 *  Algorithm based on Hurwitz's method of doubling continued
 *  fractions (see Knuth Vol. 3, p.360).
 *
 *  A negative value terminates the last partial quotient.
 *
 *  Note:  for the non-C programmers, the statement  break
 *  exits a loop and the statement  continue  skips to the next
 *  case in the same loop.
 *
 *  The call  modf ( l / 2, &l0 )  assigns the integer portion of
 *  half of L to L0.
 */

int dbleCF (double i[], double j[])
{
      double k,
                    l,
                    l0,
                    j0;
      int    n,
                    m;
    n = 1;
    m = 0;
    j0 = i[0] + i[0];
    l = i[n];
    while (1)
    {
        if (l < 0)
        {
            j[m] = j0;
            break;
        };
        modf (l / 2, &l0);
        l = l - l0 - l0;
        k = i[n + 1];
        if (l0 > 0)
        {
            j[m] = j0;
            j[m + 1] = l0;
            j0 = 0;
            m = m + 2;
        };
        if (l == 0) {
/*
 *  Even case.
 */
            if (k < 0)
            {
                m = m - 1;
                break;
            }
            else
            {
                j0 = j0 + k + k;
                n = n + 2;
                l = i[n];
                continue;
            };
        }
/*
 *  Odd case.
 */
        if (k < 0)
        {
            j[m] = j0 + 2;
            break;
        };
        if (k == 0)
        {
            n = n + 2;
            l = l + i[n];
            continue;
        };
        j[m] = j0 + 1;
        m = m + 1;
        j0 = 1;
        l = k - 1;
        n = n + 1;
        continue;
    };
    m = m + 1;
    j[m] = -99999;
    return (m);
}

/*
 *  Subroutine  input  computes the continued fraction for
 *  (2/e) / (pi/2) , where  e = 2 ^ (D-1) , given  pi 's
 *  continued fraction as input.  That is, double the continued
 *  fraction of  pi   D-3  times and place a zero at the front.
 *
 *  One should use as many partial coefficients of  pi  as
 *  necessary to resolve numbers of the width of the underflow
 *  plus the overflow threshold.  A rule of thumb is  0.97
 *  partial coefficients are generated for every decimal digit
 *  of  pi .  The last coefficient of  pi  is terminated by a
 *  negative number.
 *
 *  I'll be happy to supply anyone with the partial coefficients
 *  of  pi .  My ARPA address is  mcdonald@ucbdali.BERKELEY.ARPA .
 *
 *  I computed the partial coefficients of  pi  using a method of
 *  Bill Gosper's.  I need only compute with integers, albeit
 *  large ones.  After writing the program in  bc  and  Vaxima  ,
 *  Prof. Fateman suggested  FranzLisp .  To my surprise, FranzLisp
 *  ran the fastest!  the reason?   FranzLisp's  Bignum  package is
 *  hand coded in assembler.  Also,  FranzLisp  can be compiled.
 *
 *
 *  Note: for radix B machines, subroutine  input  should compute
 *  the continued fraction for  (B/e)/(pi/2)  where  e = B ^ (D - 1).
 *  In the case of hexadecimal ( B = 16 ), this is done by repeated
 *  doubling the appropriate number of times.
 */

void input (double i[])
{
    int     k;
    double  j[MAX_k];

/*
 *  Read in the partial coefficients of  pi  from a precalculated file
 *  until a negative value is encountered.
 */

    k = -1;
    do
    {
        k = k + 1;
        scanf ("%lE", &i[k]);
        printf("hello\n");
        printf("%d", k);
    } while (i[k] >= 0);

/*
 *  Double the continued fraction for  pi  D-3  times using
 *  i  and  j  alternately as source and destination.  On my
 *  machine  D = 56  so  D-3  is odd; hence the following code:
 *
 *  Double twice  (D-3)/2  times,
 */
    for (k = 1; k <= (D - 3) / 2; k = k + 1)
    {
        dbleCF (i, j);
        dbleCF (j, i);
    };
/*
 *  then double once more.
 */
    dbleCF (i, j);

/*
 *  Now append a zero on the front (reciprocate the continued
 *  fraction) and the return the coefficients in  i .
 */

    i[0] = 0;
    k = -1;
    do
    {
        k = k + 1;
        i[k + 1] = j[k];
    } while (j[k] >= 0);

/*
 *  Return the length of the continued fraction, including its
 *  terminator and initial zero, in the global variable CFlength.
 */

    CFlength = k;
}

/*
 *  Given a continued fraction's coefficients in an array  i ,
 *  subroutine  nearPiOver2  finds all machine representable
 *  values near a integer multiple of  pi/2  in the current binade.
 */

void nearPiOver2 (double i[])
{
    int     k,                  /* subscript for recurrences    (see
                                   handout) */
            K;                  /* like  k , but used during cancel. elim.
                                   */
    double  p[MAX_k],           /* product of the q's           (see
                                   handout) */
            q[MAX_k],           /* successive tail evals of CF  (see
                                   handout) */
            j[MAX_k],           /* like convergent numerators   (see
                                   handout) */
            tmp,                /* temporary used during cancellation
                                   elim. */
            mk0,                /* m[k - 1]                     (see
                                   handout) */
            mk,                 /* m[k] is one of the few ints  (see
                                   handout) */
            mkAbs,              /* absolute value of m sub k
                                */
            mK0,                /* like  mk0 , but used during cancel.
                                   elim. */
            mK,                 /* like  mk  , but used during cancel.
                                   elim. */
            z,                  /* the object of our quest (the argument)
                                */
            m0,                 /* the mantissa of z as a D-bit integer
                                */
            x,                  /* the reduced argument         (see
                                   handout) */
            ldexp (),           /* sys routine to multiply by a power of
                                   two  */
            fabs (),            /* sys routine to compute FP absolute
                                   value   */
            floor (),           /* sys routine to compute greatest int <=
                                   value   */
            ceil ();            /* sys routine to compute least int >=
                                   value   */

 /*
  *  Compute the q's by evaluating the continued fraction from
  *  bottom up.
  *
  *  Start evaluation with a big number in the terminator position.
  */

    q[CFlength] = 1.0 + 30;

    for (k = CFlength - 1; k >= 0; k = k - 1)
        q[k] = i[k] + 1 / q[k + 1];

/*
 *  Let  THRESHOLD  be the biggest  | x |  that we are interesed in
 *  seeing.
 *
 *  Compute the p's and j's by the recurrences from the top down.
 *
 *  Stop when
 *
 *        1                          1
 *      -----   >=  THRESHOLD  >   ------    .
 *      2 |j |                     2 |j  |
 *          k                          k+1
 */

    p[0] = 1;
    j[0] = 0;
    j[1] = 1;
    k = 0;
    do
    {
        p[k + 1] = -q[k + 1] * p[k];
        if (k > 0)
            j[1 + k] = j[k - 1] - i[k] * j[k];
        k = k + 1;
    } while (1 / (2 * fabs (j[k])) >= THRESHOLD);

/*
 *  Then  mk  runs through the integers between
 *
 *                  k        +                   k        +
 *              (-1)  e / p  -  1/2     &    (-1)  f / p  -  1/2  .
 *                         k                            k
 */

    for (mkAbs = floor (e / fabs (p[k]));
            mkAbs <= ceil (f / fabs (p[k])); mkAbs = mkAbs + 1)
    {

        mk = mkAbs * sgn (p[k]);

/*
 *  For each  mk ,  mk0  runs through integers between
 *
 *                    +
 *              m  q  -  p  THRESHOLD  .
 *               k  k     k
 */

        for (mk0 = floor (mk * q[k] - fabs (p[k]) * THRESHOLD);
                mk0 <= ceil (mk * q[k] + fabs (p[k]) * THRESHOLD);
                mk0 = mk0 + 1)
        {

/*
 *  For each pair  { mk ,  mk0 } , check that
 *
 *                             k
 *              m       =  (-1)  ( j   m  - j  m   )
 *               0                  k-1 k    k  k-1
 */
            m0 = (k & 1 ? -1 : 1) * (j[k - 1] * mk - j[k] * mk0);

/*
 *  lies between  e  and  f .
 */
            if (e <= fabs (m0) && fabs (m0) <= f)
            {

/*
 *  If so, then we have found an
 *
 *                              k
 *              x       =  ((-1)  m  / p  - m ) / j
 *                                 0    k    k     k
 *
 *                      =  ( m  q  - m   ) / p  .
 *                            k  k    k-1     k
 *
 *  But this later formula can suffer cancellation.  Therefore,
 *  run the recurrence for the  mk 's  to get  mK  with minimal
 *   | mK | + | mK0 |  in the hope  mK  is  0  .
 */
                K = k;
                mK = mk;
                mK0 = mk0;
                while (fabs (mK) > 0)
                {
                    p[K + 1] = -q[K + 1] * p[K];
                    tmp = mK0 - i[K] * mK;
                    if (fabs (tmp) > fabs (mK0))
                        break;
                    mK0 = mK;
                    mK = tmp;
                    K = K + 1;
                };

/*
 *  Then
 *              x       =  ( m  q  - m   ) / p
 *                            K  K    K-1     K
 *
 *  as accurately as one could hope.
 */
                x = (mK * q[K] - mK0) / p[K];

/*
 *  To return  z  and  m0  as positive numbers,
 *   x  must take the sign of  m0  .
 */
                x = x * sgn (m0);
                m0 = fabs (m0);

/*d
 *  Set  z = m0 * 2 ^ (binade+1-D) .
 */
                z = ldexp (m0, binade + 1 - D);

/*
 *  Print  z (hex),  z (dec),  m0 (dec),  binade+1-D,  x (hex), x (dec).
 */

                printf ("%08lx %08lx    Z=%22.16E    M=%17.17G    L+1-%d=%3d    %08lx %08lx    x=%23.16E\n", hex (z), z, m0, D, binade + 1 - D, hex (x), x);

            }
        }
    }
}
EN

回答 1

Stack Overflow用户

回答已采纳

发布于 2012-03-04 05:32:38

理论

首先,让我们注意一下使用单精度算术make的区别。

  1. 方程8 f的最小值可以更大。由于双精度数是单精度数的超集,因此最接近2/pi倍数的single只能比~2.98e-19远,因此f的固定算术表示中的前导零的数量必须最多为61个前导零(但可能会更少)。因此,y必须精确到fdigits + 24 (单精度的非零有效位)+7(额外的保护位)= fdigits + 31,并且最多92。
  2. 方程9“因此,连同x指数的宽度,2/pi必须包含127 (single的最大指数)+ 31 + fdigits,或158 + fdigits和最多219 bits.
  3. Subsection 2.5 A的大小由二进制点之前x中的零的数量决定(不受移动到single的影响),而C的大小由9之前的公式确定。

代码语言:javascript
复制
- For large `x` (`x`>=2^24), `x` looks like this: [24 bits, M zeros]. Multiplying it by `A`, whose size is the first `M` bits of `2/pi`, will result in an integer (the zeros of `x` will just shift everything into the integers). 
- Choosing `C` to be starting from the `M+d` bit of `2/pi` will result in the product `x*C` being of size at most `d-24`. In double precision, `d` is chosen to be 174 (and instead of 24, we have 53) so that the product will be of size at most 121. In `single`, it is enough to choose `d` such that `d-24 <= 92`, or more precisely, `d-24 <= fdigits+31`. That is, `d` can be chosen as `fdigits`+55, or at most 116.
- As a result, `B` should be of size at most 116 bits.

因此,我们只剩下两个问题:

  1. 计算fdigits。这涉及到阅读链接论文中的参考文献6并理解它。可能没那么容易。:)据我所知,这是唯一一个nearpi.c是used.
  2. Computing B的地方,是2/pi的相关部分。由于M的下界为127,因此我们可以离线计算2/pi的前几个127+116位,并将它们存储在一个数组中。参见Wikipedia.
  3. Computing y=x*B。这涉及到将x乘以116位数字。这就是使用第3节的地方。块的大小被选择为24,因为2*24 +2(将两个24位数字相乘,并添加3个这样的数字)小于double的精度53 (并且因为24除以96)。出于类似的原因,我们可以使用11位大小的块进行single运算。

注意-- B的诀窍只适用于指数为正的数字(x>=2^24)。

总而言之,首先,你必须用double精度解决这个问题。您的Matlab代码也不能在double精度下工作(尝试删除single并计算sin(2^53),因为您的twooverpi只有53个有效位,而不是175位(而且无论如何,您不能在Matlab中直接将这样精确的数字相乘)。其次,该方案应该适用于single,同样,关键问题是足够精确地表示2/pi,并支持高精度数字的乘法。最后,当一切正常时,你可以试着找出一个更好的fdigits来减少你必须存储和乘法的位数。

希望我不是完全不对劲--欢迎评论和矛盾。

示例

例如,让我们计算sin(x) where x = single(2^24-1),它在有效位(M = 0)之后没有零。这简化了B的查找,因为B2/pi的前116位组成。由于x的精度为24位,B为116位,因此产品

代码语言:javascript
复制
y = x * B

将根据需要具有92位的精度。

链接论文中的第3节描述了如何以足够的精度执行此产品;在我们的情况下,可以对大小为11的块使用相同的算法来计算y。作为一项苦差事,我希望我没有显式地做这件事,而是依赖于Matlab的符号数学工具箱。这个工具箱为我们提供了vpa函数,它允许我们以十进制数字来指定数字的精度。

代码语言:javascript
复制
vpa('2/pi', ceil(116*log10(2)))

将产生至少116bit精度的2/pi近似值。因为vpa只接受整数作为它的精度参数,所以我们通常不能精确地指定一个数字的二进制精度,所以我们使用次好的。

以下代码根据论文以single精度计算sin(x)

代码语言:javascript
复制
x = single(2^24-1);
y = x *  vpa('2/pi', ceil(116*log10(2)));    % Precision = 103.075
k = round(y);
f = single(y - k);
r = f * single(pi) / 2;
switch mod(k, 4)
    case 0 
        s = sin(r);
    case 1
        s = cos(r);
    case 2
        s = -sin(r);
    case 3
        s = -cos(r);
end
sin(x) - s                                   % Expected value: exactly zero.

( y的精度是使用Mathematica获得的,事实证明它是一个比Matlab更好的数值工具:)

libm

这个问题的另一个答案(后来被删除了)将我带到了libm中的一个实现,虽然它适用于双精度数字,但完全遵循链接的论文。

有关包装器的信息,请参见文件s_sin.c (链接文章中的表2在文件末尾显示为switch语句),有关参数缩减代码的信息,请参阅e_rem_pio2.c (特别有趣的是包含2/pi的前396个十六进制数字的数组,从第69行开始)。

票数 9
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/9423516

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档