首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >期望输入[64]与匹配目标[32]?

期望输入[64]与匹配目标[32]?

提问于 2023-01-25 10:27:42
回答 0关注 0查看 146

ValueError: Expected input batch_size (64) to match target batch_size (32)

代码语言:javascript
运行
复制
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import pandas as pd


class DiabetesDataset(Dataset):
    def __init__(self, filepath):
        data = pd.read_csv(filepath)
        self.len = data.shape[0]  # shape[0]指行数,shape[1]指列数,data.shape返回的是行数和列数
        self.x_data = torch.tensor(np.array(data)[:, 1:-1].astype(np.float32))
        # 第二列到最后一列的数
        self.y_data = torch.tensor(np.array(data)[:, [0]].astype(np.float32))

    def __getitem__(self, index):
        return self.x_data[index], self.y_data[index]

    def __len__(self):
        return self.len

trainsets = DiabetesDataset('data/us-101.csv')
testsets = DiabetesDataset('data/us-101.csv')

batch_size = 32
epoches = 40

train_loader =DataLoader(dataset=trainsets, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=testsets, batch_size=batch_size, shuffle=False)

#构建模型
class LSTM_Model(nn.Module):
    def __init__(self, input_dim, hidden_dim, layer_dim, output_dim):
        super(LSTM_Model, self).__init__()
        self.hidden_dim = hidden_dim
        self.layer_dim = layer_dim
        self.lstm = nn.LSTM(input_dim, hidden_dim, layer_dim, batch_first=True)
        self.fc = nn.Linear(hidden_dim, 64)
        self.fc1 = nn.Linear(64, output_dim)
        self.so = nn.Softmax(dim=1)
        self.drop = nn.Dropout(0.3)
        self.relu = nn.ReLU()

    def forward(self, x):
        ho = torch.zeros(self.layer_dim, x.size(0),  self.hidden_dim).requires_grad_().to(device)
        co = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_().to(device)
        out, (hn, cn) = self.lstm(x, (ho.detach(), co.detach()))
        out = self.so(self.drop(self.fc1(self.relu(self.drop(self.fc(out[:, -1, :]))))))
        return out

#参数设置
input_dim = 4
hidden_dim = 128
layer_dim = 1
output_dim = 3
sequence_dim = 1
iter = 0

#模型调用
model = LSTM_Model(input_dim, hidden_dim, layer_dim, output_dim)

#使用Gpu
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model.to(device)
#构建损失器和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

# length = len(list(model.parameters()))
# for i in range(length):
#     print('参数: %d' % (i+1))
#     print(list(model.parameters())[i].size())

loss_list = []
accurary_list = []
iteration_list = []

#模型训练
if __name__ == '__main__':
    for epoch in range(epoches):
        for i, (images, labels) in enumerate(train_loader, 0):
            images = images.view(-1, sequence_dim, input_dim).requires_grad_().to(device)
            labels = labels.to(device)
            optimizer.zero_grad()
            outputs = model(images)
            loss = criterion(outputs, labels.squeeze(dim=1).long())
            # loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            iter += 1
            if iter % 500 == 0:
                model.eval()
                correct = 0.0
                total = 0.0
                with torch.no_grad():
                    for images, labels in test_loader:
                        images = images.view(-1, sequence_dim, input_dim).to(device)
                        outputs = model(images)
                        _, predict = torch.max(outputs.data, dim=1)
                        total += labels.size(0)
                        if torch.cuda.is_available():
                            correct += (predict.gpu() == labels.gpu()).sum()
                        else:
                            correct += (predict == labels).sum()
                    accurary = correct / total
                    loss_list.append(loss.data)
                    accurary_list.append(accurary)
                    iteration_list.append(iter)
                    print("loop: {}, Loss: {}".format(iter, loss.item()))
                    print('Accuracy on test set: %d %%' % (correct / total))



#可视化
plt.plot(iteration_list, loss_list)
plt.xlabel('Number of Iteration')
plt.ylabel('Loss')
plt.title('LSTM')
plt.show()

plt.plot(iteration_list, accurary_list)
plt.xlabel('Number of Iteration')
plt.ylabel('accurary')
plt.title('LSTM')
plt.show()

报错为:

Traceback (most recent call last):

File "C:\Users\yin\PycharmProjects\ngsim\predict.py", line 88, in <module>

loss = criterion(outputs, labels.squeeze(dim=1).long())

File "C:\Users\yin\miniconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1194, in _call_impl

return forward_call(*input, **kwargs)

File "C:\Users\yin\miniconda3\envs\pytorch\lib\site-packages\torch\nn\modules\loss.py", line 1174, in forward

return F.cross_entropy(input, target, weight=self.weight,

File "C:\Users\yin\miniconda3\envs\pytorch\lib\site-packages\torch\nn\functional.py", line 3026, in cross_entropy

return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing)

ValueError: Expected input batch_size (64) to match target batch_size (32).

回答

和开发者交流更多问题细节吧,去 写回答
相关文章

相似问题

相关问答用户
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档