我需要在下面运行这样一个任务。不知何故,我漏掉了一点。我知道,我不能像这样使用javasparkcontext并传递javafunctions,因为有序列化问题。
我需要运行多个大小为cartesian.size()的cassandra查询。有什么建议吗?
JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<DateTime> dateTimeJavaRDD = jsc.parallelize(dateTimes); //List<DateTime>
JavaRDD<Integer> virtualPartitionJavaRDD = jsc.parallelize(virtualPartitions); //List<Integer>
JavaPairRDD<DateTime, Integer> cartesian = dateTimeJavaRDD.cartesian(virtualPartitionJavaRDD);
long c = cartesian.map(new Function<Tuple2<DateTime, Integer>, Long>() {
@Override
public Long call(Tuple2<DateTime, Integer> tuple2) throws Exception {
return javaFunctions(jsc).cassandraTable("keyspace", "table").where("p1 = ? and p2 = ?", tuple2._1(), tuple2._2()).count();
}
}).reduce((a,b) -> a + b);
System.out.println("TOTAL ROW COUNT IS: " + c);发布于 2019-07-03 18:54:19
正确的解决方案应该是在数据和Casasndra表之间执行连接。有一个joinWithCassandraTable function可以满足您的需求--您只需生成包含p1和p2值的Tuple2的RDD,然后调用joinWithCassandra表,就像这样(未经过测试,取自我的示例here):
JavaRDD<Tuple2<Integer, Integer>> trdd = cartesian.map(new Function<Tuple2<DateTime, Integer>, Tuple2<Integer, Integer>>() {
@Override
public Tuple2<Integer, Integer> call(Tuple2<DateTime, Integer> tuple2) throws Exception {
return new Tuple2<Integer, Integer>(tuple2._1(), tuple2._2());
}
});
CassandraJavaPairRDD<Tuple2<Integer, Integer>, Tuple2<Integer, String>> joinedRDD =
trdd.joinWithCassandraTable("test", "jtest",
someColumns("p1", "p2"), someColumns("p1", "p2"),
mapRowToTuple(Integer.class, String.class), mapTupleToRow(Integer.class));
// perform counting here...https://stackoverflow.com/questions/56867238
复制相似问题