Python:使用groupby获取在组中具有最大值的行

内容来源于 Stack Overflow,并遵循CC BY-SA 3.0许可协议进行翻译与使用

  • 回答 (2)
  • 关注 (0)
  • 查看 (35)

我希望我能为我的问题找到帮助。我正在寻找解决以下问题的方法:

我有一个数据框架,就像:

 Sp  Mt Value  count
0  MM1  S1   a      **3**
1  MM1  S1   n      2
2  MM1  S3   cb     5
3  MM2  S3   mk      **8**
4  MM2  S4   bg     **10**
5  MM2  S4   dgd      1
6  MM4  S2  rd     2
7  MM4  S2   cb      2
8  MM4  S2   uyi      **7**

我的目标是得到结果行,其计数是组之间的最大值,如下所示:

0  MM1  S1   a      **3**
1 3  MM2  S3   mk      **8**
4  MM2  S4   bg     **10** 
8  MM4  S2   uyi      **7**

有人知道我怎么能在熊猫或巨蟒身上做到这一点?

更新

对于我的问题,我没有给出更多的细节。对于我的问题,我想按‘Sp’,‘Mt’...。让我们举第二个例子,如下所示:

   Sp   Mt   Value  count
4  MM2  S4   bg     10
5  MM2  S4   dgd    1
6  MM4  S2   rd     2
7  MM4  S2   cb     8
8  MM4  S2   uyi    8

对于上面的示例,我希望得到每个组中Count等于max的所有行,例如:

MM2  S4   bg     10
MM4  S2   cb     8
MM4  S2   uyi    8
提问于
用户回答回答于
In [1]: df
Out[1]:
    Sp  Mt Value  count
0  MM1  S1     a      3
1  MM1  S1     n      2
2  MM1  S3    cb      5
3  MM2  S3    mk      8
4  MM2  S4    bg     10
5  MM2  S4   dgd      1
6  MM4  S2    rd      2
7  MM4  S2    cb      2
8  MM4  S2   uyi      7

In [2]: df.groupby(['Mt'], sort=False)['count'].max()
Out[2]:
Mt
S1     3
S3     8
S4    10
S2     7
Name: count

要获得原始DF的索引,可以这样做:

In [3]: idx = df.groupby(['Mt'])['count'].transform(max) == df['count']

In [4]: df[idx]
Out[4]:
    Sp  Mt Value  count
0  MM1  S1     a      3
3  MM2  S3    mk      8
4  MM2  S4    bg     10
8  MM4  S2   uyi      7

注意,如果每个组有多个最大值,则将返回所有值。

更新

这是“行动”组织要求的一个机会:

In [5]: df['count_max'] = df.groupby(['Mt'])['count'].transform(max)

In [6]: df
Out[6]:
    Sp  Mt Value  count  count_max
0  MM1  S1     a      3          3
1  MM1  S1     n      2          3
2  MM1  S3    cb      5          8
3  MM2  S3    mk      8          8
4  MM2  S4    bg     10         10
5  MM2  S4   dgd      1         10
6  MM4  S2    rd      2          7
7  MM4  S2    cb      2          7
8  MM4  S2   uyi      7          7
用户回答回答于

您可以按计数对数据帧进行排序,然后删除重复项。我觉得更容易些:

df.sort_values('count', ascending=False).drop_duplicates(['Sp','Mt'])

扫码关注云+社区

领取腾讯云代金券