在创建了决策树函数后,我决定检查树的准确性,并确认如果我将使用相同的数据创建其他树,则至少第一次分割是相同的
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
import os
from sklearn import tree
from sklearn import preprocessing
import sys
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold.
def desicion_tree(data_set:pd.DataFrame,val_1 : str, val_2 : str):
#Encoder -- > fit doesn't accept strings
feature_cols = data_set.columns[0:-1]
X = data_set[feature_cols] # Independent variables
y = data_set.Mut #class
y = y.to_list()
le = preprocessing.LabelBinarizer()
y = le.fit_transform(y)
# Split data set into training set and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=1) # 75%
# Create Decision Tree classifer object
clf = DecisionTreeClassifier(max_depth= 4, criterion= 'entropy')
# Train Decision Tree Classifer
clf.fit(X_train, y_train)
# Predict the response for test dataset
y_pred = clf.predict(X_test)
#Perform cross validation
for i in range(2, 8):
plt.figure(figsize=(14, 7))
# Perform Kfold cross validation
#cv = ShuffleSplit(test_size=0.25, random_state=0)
kf = KFold(n_splits=5,shuffle= True)
scores = cross_val_score(estimator=clf, X=X, y=y, n_jobs=4, cv=kf)
print("%0.2f accuracy with a standard deviation of %0.2f" % (scores.mean(), scores.std()))
tree.plot_tree(clf,filled = True,feature_names=feature_cols,class_names=[val_1,val_2])
plt.show()
desicion_tree(car_rep_sep_20, 'Categorial', 'Non categorial')向下,我编写了一个循环,以便使用Kfold重新处理包含拆分值的树。准确率在变化(大约90%),但树是一样的,我哪里弄错了?
发布于 2020-12-29 02:49:54
cross_val_score克隆估计器,以便对各种折叠进行拟合和评分,因此clf对象与您在循环之前将其拟合到整个数据集时保持相同,因此绘制的树就是那个树,而不是任何交叉验证的树。
为了得到你想要的东西,我认为你可以使用带有return_estimator=True选项的cross_validate。如果您的cv对象具有所需的拆分数量,您也不应该需要循环:
kf = KFold(n_splits=5, shuffle=True)
cv_results = cross_validate(
estimator=clf,
X=X,
y=y,
n_jobs=4,
cv=kf,
return_estimator=True,
)
print("%0.2f accuracy with a standard deviation of %0.2f" % (
cv_results['test_score'].mean(),
cv_results['test_score'].std(),
))
for est in cv_results['estimator']:
tree.plot_tree(est, filled=True, feature_names=feature_cols, class_names=[val_1, val_2])
plt.show();或者,在折叠(或其他简历迭代)上手动循环,拟合模型并在循环中绘制其树。
https://stackoverflow.com/questions/65479236
复制相似问题