我有一个多变量蒙特卡洛隐马尔可夫问题要解决:
   x[k] = f(x[k-1]) + B u[k]
   y[k] = g(x[k])其中:
x[k] the hidden states (Markov dynamics)
y[k] the observed data
u[k] the stochastic driving processPyMC3是否已经足够成熟,可以处理这个问题,或者我应该继续使用2.3版?其次,在PyMC框架中对HM模型的任何引用都将非常受欢迎。谢谢。
--亨克
发布于 2013-11-29 22:58:37
我在PyMC 2.x上也做了类似的事情。我的u并不依赖于时间。下面是我的例子。
# we're using `some_tau` for the noise throughout the example.
# this should be replaced with something more meaningful.
some_tau = 1 / .5**2
# PRIORS
# we don't know too much about the velocity, might be pos. or neg. 
vel = pm.Normal("vel", mu=0, tau=some_tau)
# MODEL
# next_state = prev_state + vel (and some gaussian noise)
# That means that each state depends on the prev_state and the vel.
# We save the states in a list.
states = [pm.Normal("s0", mu=true_positions[0], tau=some_tau)]
for i in range(1, len(true_positions)):
    states.append(pm.Normal(name="s" + str(i),
                            mu=states[-1] + vel,
                            tau=some_tau))
# observation with gaussian noise
obs = pm.Normal("obs", mu=states, tau=some_tau, value=true_positions, observed=True)我想你需要把你的vel建模成一个房车列表。他们可能也有一些依赖性。
这是最初的问题:PyMC: Parameter estimation in a Markov system
下面是作为IPython笔记本的完整示例:http://nbviewer.ipython.org/github/sotte/random_stuff/blob/master/PyMC%20-%20Simple%20Markov%20Chain.ipynb
https://stackoverflow.com/questions/19875621
复制相似问题