首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >我该如何着手编写虚拟机

我该如何着手编写虚拟机
EN

Stack Overflow用户
提问于 2009-11-05 13:32:07
回答 7查看 19.6K关注 0票数 23

我对编写虚拟机很感兴趣,不像virtualbox或vmware那么花哨,而是可以模拟简单体系结构的东西,比如Zilog、SPARC、MIPS或80686体系结构模型。

我想,通过这样做,做一个同类的仿真器会相对简单,我只是对使用这种仿真器比其他任何东西都更感兴趣(作为我的第一个C项目,我宁愿用C语言来做这件事,而不是用其他任何东西)。

EN

回答 7

Stack Overflow用户

发布于 2009-11-05 14:06:21

看看其他人在这方面做了些什么!

获取关于特定类型应用程序的信息的一个好方法(在您的例子中也是获取c语言习惯用法的好方法)是通过查看相同类型的开源项目的结构和细节。为了从头开始自己的项目,一个人可能决定只看一眼,简单回顾一下,然后“忘记”,但在所有情况下,这种类型的访问都是有益的。

由于您提到了“简单架构”和Zilog,我认为Z80处理器可能是一个很好的匹配。由于各种原因,Z80仿真器流派中有许多当前和过去的项目。顺便说一句,其中一个原因是许多老式老虎机视频控制台运行在Z80上,这促使怀旧的游戏玩家编写模拟器来运行他们最喜欢的老游戏;-)

这类项目的一个示例是,它既包含完整的Z80仿真器,也包含C/PM。整件事都是用C写的,而且它相对成熟(2.x版)和活跃。我猜这是一个非常小的团队的工作(可能是一个;-)。

祝好运!

票数 14
EN

Stack Overflow用户

发布于 2010-10-10 02:19:30

如果您正在设计CPU并对其进行仿真,

把核心准备好。也就是说,为寄存器编写类。为标志写一个。编写内存控制器。

考虑一下操作码的类型。另外,单词的长度是多少?它是16位CPU吗?还是8位CPU?

您希望使用哪种类型的内存访问?DMA?HDMA?

您希望支持哪种类型的中断?中央处理器会成为一个学习平台吗?它将只是一个CPU和一些内存,还是它实际上会有连接到它的设备?(声音、视频等)。

下面是我正在开发的仿真器的一些代码(公共领域)。我已经研究了几天了。到目前为止,大约有3200行代码(大部分是microcode.cs,因为它有2600行代码,所以没有在这里发布)。

代码语言:javascript
运行
复制
using System;

namespace SYSTEM.cpu
{
    // NOTE: Only level-trigger interrupts are planned right now

    // To implement:
    // - microcode
    // - execution unit
    // - etc

    // This is the "core"; think of the CPU core like a building. You have several departments; flags, memory and registers
    // Microcode is external

    class core
    {
        public cpu_flags flags;
        public cpu_registers registers;

        public cpu_memory memory;

        public core(byte[] ROM, byte[] PRG)
        {
            flags = new cpu_flags();
            registers = new cpu_registers();

            memory = new cpu_memory(ROM, PRG);

            return;
        }
    }
}

using System;

namespace SYSTEM.cpu
{
    class cpu_flags
    {
        // SYSTEM is not a 6502 emulator. The flags here, however, are exactly named as in 6502's SR
        // They do NOT, however, WORK the same as in 6502. They are intended to similar uses, but the only identity is the naming.

        // I just like the 6502's naming and whatnot.

        // This would otherwise be a register in SYSTEM.cpu_core.cpu_registers. SR, with the bits used correctly.
        // This would be less readable, code-wise, so I've opted to dedicate an entire CLASS to the status register

        // Though, I should implement here a function for putting the flags in a byte, so "SR" can be pushed when servicing interrupts

        public bool negative, // set if the high bit of the result of the last operation was 1

            // bit 7, then so on
                overflow, // says whether the last arithmetic operation resulted in overflow (NOTE: No subtraction opcodes available in SYSTEM)

                // NO FLAG

                brk, // break flag, set when a BREAK instruction is executed

                // NO FLAG (would be decimal flag, but I don't see why anyone would want BCD. If you want it, go implement it in my emulator; in software)
                    // i.e. don't implement it in SYSTEM; write it in SYSTEM ASM and run it in SYSTEM's DEBUGGER

                irq,    // whether or not an interrupt should begin at the next interrupt period (if false, no interrupt)

                zero, // says whether the last arithmetic operation resulted in zero

                carry; // set when alpha rolls from 0xFFFF to 0x0000, or when a 1 is rotated/shifted during arithmetic

        public cpu_flags()
        {
            negative = true; // all arithmetic registers are FFFF by default, so of course they are negative

            overflow = false; // obviously, because no arithmetic operation has been performed yet

            brk = false;

            irq = true; // interrupts are enabled by default of course

            zero = false; // obviously, since all arith regs are not zero by default

            carry = false;  // obviously, since no carry operation was performed

            return;
        }

        // Explain:

        // These flags are public. No point putting much management on them here, since they are boolean

        // The opcodes that SYSTEM supports, will act on these flags. This is just here for code clarity/organisation

    }
}

using System;



// This implements the memory controller

// NOTE: NO BANK SWITCHING IMPLEMENTED, AND NOT PLANNED AT THE MOMENT, SO MAKE DO WITH TEH 64

// SYSTEM has a 16-bit address bus (and the maximum memory supported; 64K)
// SYSTEM also has a 16-bit data bus; 8-bit operations are also performed here, they just use the low bits

// 0x0000-0x00FF is stack
// 0xF000-0xFFFF is mapped to BIOS ROM, and read-only; this is where BIOS is loaded on startup.
// (meaning PROGRAM ROM can be up to 4096B, or 4K. Normally this will be used for loading a BIOS)
// Mapping other PROGRAM ROM should start from 0x0100, but execution should start from 0xF000, where ROM/BIOS is mapped

// NOTE: PROGRAM ROM IS 32K, and mapped from 0x0100 to 0x80FF

// ;-)

namespace SYSTEM.cpu
{
    class cpu_memory
    {
        // to implement:
        // device interaction (certain addresses in ROM should be writeable by external device, connected to the controller)
        // anything else that comes to mind.

        // Oh, and bank switching, if feasible

        private byte[] RAM; // As in the bull? ...

        public cpu_memory(byte[] ROM, byte[] PRG)
        {
            // Some code here can be condensed, but for the interest of readability, it is optimized for readability. Not space.

            // Checking whether environment is sane... SYSTEM is grinning and holding a spatula. Guess not.
            if(ROM.Length > 4096) throw new Exception("****SYSINIT PANIC****: BIOS ROM size INCORRECT. MUST be  within 4096 BYTES. STOP");

            if (PRG.Length > 32768) throw new Exception("****SYSINIT PANIC**** PROGRAM ROM size INCORRECT. MUST be within 61184 BYTES. STOP");

            if(ROM.Length != 4096) // Pads ROM to be 4096 bytes, if size is not exact
            {                       // This would not be done on a physical implementation of SYSTEM, but I feel like being kind to the lazy
                this.RAM = ROM;
                ROM = new byte[4096];
                for(int i = 0x000; i < RAM.Length; i++) ROM[i] = this.RAM[i];
            }

            if(PRG.Length != 32768) // Pads PRG to be 61184 bytes, if size is not exact
            {                   // again, being nice to lazy people..
                this.RAM = PRG;
                PRG = new byte[32768];
                for(int i = 0x000; i < RAM.Length; i++) PRG[i] = RAM[i];
            }

            this.RAM = new byte[0x10000]; // 64K of memory, the max supported

            // Initialize all bytes in the stack, to 0xFF
            for (int i = 0; i < 0x100; i++) this.RAM[i] = 0xFF; // This is redundant, but desired, for my own undisclosed reasons.

        // LOAD PROGRAM ROM AND BIOS ROM INTO MEMORY

            for (int i = 0xf000; i < 0x10000; i++)  // LOAD BIOS ROM INTO MEMORY
            {
                this.RAM[i] = ROM[i - 0xf000]; // yeah, pretty easy actually
            }

            // Remember, 0x0100-0x80FF is for PROGRAM ROM

            for (int i = 0x0100; i < 0x8100; i++) // LOAD PROGRAM ROM INTO MEMORY
            {
                this.RAM[i] = PRG[i - 0x100]; // not that you knew it would be much different
            }

            // The rest, 0x8100-0xEFFF, is reserved for now (the programmer can use it freely, as well as where PRG is loaded).
            // still read/writeable though

            return;
        }

// READ/WRITE:

        // NOTE: SYSTEM's cpu is LITTLE ENDIAN
        // WHEN DOUBLE-READING, THE BYTE-ORDER IS CONVERTED TO BIG ENDIAN
        // WHEN DOUBLE-WRITING, THE BYTE TO WRITE IS BIG ENDIAN, AND CONVERTED TO LITTLE ENDIAN

        // CPU HAS MAR/MBR, but the MEMORY CONTROLLER has ITS OWN REGISTERS for this?

    // SINGLE OPERATIONS

        public byte read_single(ref cpu_registers registers, ushort address) // READ A SINGLE BYTE
        {                               // reading from any memory location is allowed, so this is simple
            registers.memoryAddress = address;
            return registers.memoryBuffer8 = this.RAM[registers.memoryAddress];

        }

        public ushort read_double(ref cpu_registers registers, ushort address) // READ TWO BYTES (converted to BIG ENDIAN byte order)
        {
            ushort ret = this.RAM[++address];
            ret <<= 8;
            ret |= this.RAM[--address];

            registers.memoryAddress = address;
            registers.memoryBuffer16 = ret;

            return registers.memoryBuffer16;
        }

        public void write_single(ref cpu_registers registers, ushort address, byte mbr_single) // WRITE A SINGLE BYTE
        {
            if (address < 0x0100) return; // block write to the stack (0x0000-0x00FF)
            if (address > 0xEFFF) return; // block writes to ROM area (0xF000-0xFFFF)

            registers.memoryAddress = address;
            registers.memoryBuffer8 = mbr_single;

            this.RAM[registers.memoryAddress] = registers.memoryBuffer8;

            return;
        }

        public void write_double(ref cpu_registers registers, ushort address, ushort mbr_double) // WRITE TWO BYTES (converted to LITTLE ENDIAN ORDER)
        {
            // writes to stack are blocked (0x0000-0x00FF)
            // writes to ROM are blocked   (0xF000-0xFFFF)

            write_single(ref registers, ++address, (byte)(mbr_double >> 8));
            write_single(ref registers, --address, (byte)(mbr_double & 0xff));

            registers.memoryBuffer16 = mbr_double;
            return;
        }

        public byte pop_single(ref cpu_registers registers) // POP ONE BYTE OFF STACK
        {
            return read_single(ref registers, registers.stackPointer++);
        }

        public ushort pop_double(ref cpu_registers registers) // POP TWO BYTES OFF STACK
        {
            ushort tmp = registers.stackPointer++;          ++registers.stackPointer;
            return read_double(ref registers, tmp);
        }

    // PUSH isn't as easy, since we can't use write_single() or write_double()
    // because those are for external writes and they block writes to the stack
    // external writes to the stack are possible of course, but
        // these are done here through push_single() and push_double()

        public void push_single(ref cpu_registers registers, byte VALUE) // PUSH ONE BYTE
        {
            registers.memoryAddress = --registers.stackPointer;
            registers.memoryBuffer8 = VALUE;

            this.RAM[registers.memoryAddress] = registers.memoryBuffer8;
            return;
        }

        public void push_double(ref cpu_registers registers, ushort VALUE) // PUSH TWO BYTES
        {
            this.RAM[--registers.stackPointer] = (byte)(VALUE >> 8);
            this.RAM[--registers.stackPointer] = (byte)(VALUE & 0xff);

            registers.memoryAddress = registers.stackPointer;
            registers.memoryBuffer16 = VALUE;

            return;
        }
    }
}

using System;

namespace SYSTEM.cpu
{
    // Contains the class for handling registers. Quite simple really.

    class cpu_registers
    {
        private byte sp, cop; // stack pointer, current opcode
        //

        private ushort pp, ip, // program pointer, interrupt pointer
            mar, mbr_hybrid; // memory address and memory buffer registers,
                        // store address being operated on, store data being read/written
                        // mbr is essentially the data bus; as said, it supports both 16 and 8 bit operation.

                        // There are properties in this class for handling mbr in 16-bit or 8-bit capacity, accordingly
                        // NOTE: Paged memory can be used, but this is handled by opcodes, otherwise the memory addressing
                        //       is absolute

                        // NOTE: sp is also an address bus, but used on the stack (0x0000-0x00ff) only
                        // when pushing to the stack, or pulling, mbr gets updated in 8-bit capacity



                        // For pulling 16-bit word from stack, shifting register 8 left is needed, otherwise the next 
                        // POP operation will override the result of the last

        // Alpha is accumulator, the rest are general purpose
        public ushort alphaX, bravoX, charlieX, deltaX;

        public cpu_registers()
        {
            sp = 0xFF;  // stack; push left, pop right
            // stack is from 0x0000-0x00ff in memory
            pp = 0xf000; // execution starts from 0xf000; ROM is loaded
            // from 0xf000-0xffff, so 4KB of ROM. 
            // 0xf000-0xffff cannot be written to in software; though this disable
            // self-modifying code, effectively.

            ip = pp; // interrupt pointer starts from the same place as pp

            alphaX = bravoX = charlieX = deltaX = 0xffff;

            cop = 0x00; // whatever opcode 0x00 is, cop is that on init

            mar = mbr_hybrid = 0x0000;

            return;
        }

        // Registers:

        public ushort memoryAddress // no restrictions on read/write, but obviously it needs to be handled with care for this register
        {                       // This should ONLY be handled by the execution unit, when actually loading instructions from memory
            set { mar = value; }
            get { return mar; }
        }

    // NOTE: 8-bit and 16-bit address bus are shared, but address bus must have all bits written.
    // when writing 8-bit value, byte-signal gets split. Like how an audio/video splitter works.

        public byte memoryBuffer8 // treats address bus as 8-bit, load one byte
        {
            set {   // byte is loaded into both low and high byte in mbr (i.e. it is split to create duplicates, for a 16-bit signal)
                mbr_hybrid &= 0x0000;   
                mbr_hybrid |= (ushort)value;
                mbr_hybrid <<= 0x08;
                mbr_hybrid |= (ushort)value;
            } get {
                return (byte)mbr_hybrid;
            }
        }

        public ushort memoryBuffer16 // treats address bus as 16-bit, load two bytes
        {
            set {
                mbr_hybrid &= 0x0000;
                mbr_hybrid |= value;
            } get {
                return mbr_hybrid;
            }
        }

        public byte stackPointer // sp is writable, but only push/pull opcodes
        {                        // should be able to write to it. There SHOULD
            set { sp = value; }  // be opcodes for reading from it
            get { return sp; }
        }

        public byte currentOpcode
        {
            set { cop = value; }
            get { return cop; }
        }

        public ushort programPointer // says where an instruction is being executed from
        {
            set { pp = value; }
            get { return pp; }
        }

        public ushort interruptPointer // says where the next requested interrupt should begin 
        {                   // (copied into PP, after pushing relevant registers)
            set { ip = value; }
            get { return ip; }
        }

        public byte status(cpu_flags flags) // status word, containing all flags
        {
            byte ret = 0;
            if (flags.negative) ret |= 0x80;
            if (flags.overflow) ret |= 0x40;
            if (flags.brk) ret |= 0x10;
            if (flags.irq) ret |= 0x04;
            if (flags.zero) ret |= 0x02;
            if (flags.carry) ret |= 0x01;

            return ret;
        }

    }
}

using System;

using System.Collections.Generic;

namespace SYSTEM.cpu
{
    class cpu_execution
    {
        public core processor; // the "core", detailing the CPU status, including memory, memory controller, etc
        public cpu_microcode microcode; // the microcode unit (note, microcode is plug and play, you could use something else here)

        public cpu_execution(byte[] ROM, byte[] PRG) // initialize execution unit and everything under it
        {
            processor = new core(ROM, PRG);
            microcode = new cpu_microcode();

            return;
        }

        public void fetch() // fetch current instruction
        {
            processor.registers.currentOpcode = processor.memory.read_single(ref processor.registers, processor.registers.programPointer);
            return;
        }

        public void execute() // execute current instruction
        {
            processor = microcode.use(processor);
            return;
        }



    }
}

这里没有包含模拟操作码的microcode.cs,因为它有2600行代码。

所有这些都是C#。

票数 11
EN

Stack Overflow用户

发布于 2011-07-13 20:28:31

我建议你看看Elements of Computing Systems这本书。在阅读本书的过程中,您将从基本逻辑门开始构建一台虚拟计算机。当你读完这本书的时候,你已经有了一个基本的操作系统、编译器等。

可以在线获得的源代码也在Java之上实现了计算机的体系结构。

票数 7
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/1678538

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档