我的作业涉及大O分析,我想我已经掌握了它的诀窍,但我不是百分之百确定。你们这些可爱的人会不会介意看一眼,告诉我我是不是走对了路?
作业如下所示。对于问题1和3,我的分析和答案在//符号之后的右侧。对于问题2,我的分析和答案低于算法类型。
提前感谢您的帮助!:-)
1.For each of the following program fragments, give a Big-Oh analysis of the running time in terms of N:
(a) // Fragment (a)
for ( int i = 0, Sum = 0; i < N; i++ ) // N operations
for( int j = 0; j < N; j++ ) // N operations
Sum++; // Total: N^2 operations => O(N^2)
(b) // Fragment (b)
for( int i = 0, Sum = 0; i < N * N; i++ ) // N^2 operations
for( int j = 0; j < N; j ++ ) // N operations
Sum++; // Total: N^3 operations => O(N^3)
(c) // Fragment (c)
for( int i = 0, Sum = 0; i < N; i++ ) // N operations
for( int j = 0; j < i; j ++ ) // N-1 operations
Sum++; // Total: N(N-1) = N^2 – N operations => O(N^2)
(d) // Fragment (d)
for( int i = 0, Sum = 0; i < N; i++ ) // N operations
for( int j = 0; j < N * N; j++ ) // N^2 operations
for( int k = 0; k < j; k++ ) // N^2 operations
Sum++; // Total: N^5 operations => O(N^5)
2. An algorithm takes 0.5 milliseconds for input size 100. How long will it take for input size 500 if the running time is:
a. Linear
0.5 *5 = 2.5 milliseconds
b. O( N log N)
O (N log N) – treat the first N as a constant, so O (N log N) = O (log N)
Input size 100 = (log 100) + 1 = 2 + 1 = 3 operations
Input size 500 = (log 500) + 1= 2.7 + 1 = 3.7 ≈ 4 operations
Input size 100 runs in 0.5 milliseconds, so input size 500 takes 0.5 * (4/3) ≈ 0.67 milliseconds
c. Quadratic
Input size 100 in quadratic runs 100^2 operations = 10,000 operations
Input size 500 in quadratic runs 500^2 operations = 250,000 operations = 25 times as many
Input size of 100 runs in 0.5 milliseconds, so input size of 500 takes 25 * 0.5 = 12.5 milliseconds
d. Cubic
Input size 100 in quadratic runs 100^3 operations = 1,000,000 operations
Input size 500 in quadratic runs 500^3 operations = 125,000,000 operations = 125 times as many
Input size of 100 runs in 0.5 milliseconds, so input size of 500 takes 125 * 0.5 = 62.5 milliseconds
3. Find the Big-O for the following:
(a) f(x) = 2x^3 + x^2 log x // O(x^3)
(b) f(x) = (x^4 – 34x^3 + x^2 -20) // O(x^4)
(c) f(x) = x^3 – 1/log(x) // O(x^3)
4. Order the following functions by growth rate: (1 is slowest growth rate; 11 is fastest growth rate)
__6_ (a) N
__5_ (b) √N
__7_ (c) N^1.5
__9_ (d) N^2
__4_ (e) N log N
__2_ (f) 2/N
_11_ (g) 2^N
__3_ (h) 37
_10_ (i) N^3
__1_ (j) 1/ N^2
__8_ (k) N^2 /log N
* My logic in putting (j) and (f) as the slowest is that as N grows, 1/N^2 and 2/N decrease, so their growth rates are negative and therefore slower than the rest which have positive growth rates (or a 0 growth rate in the case of 37 (h)). Is that correct?发布于 2012-03-13 13:39:10
我看了你的问题1到3,它看起来没问题。
遵循以下规则,自己检查:
1)可以省略乘法常量,示例50n^2简化为n^2
2)如果a>b示例n^3支配n^2,则n^a支配n^b,因此n^3 + n^2 +n,简化为n3
3)任意指数支配任意多项式示例3^n支配n^5示例2^n支配n^2+5n+100
4)任何多项式支配任何对数例如n支配(log )3
至于问题4,请使用下面的指南(从最小到最大):
Log2 n
发布于 2012-03-13 14:46:35
时间计算的(b)项的答案是错误的。您不能假设n中的一个,因为constant.So nlogn变为1log1,这意味着log1为0。所以是0。
所以答案是100次log100运算与500log500...
从最小到最大。B是4,a是5。c,e,k是位置6,7和8的竞争。你给出的位置1,2,3是正确的。9,10,11是正确的。
我会检查6,7,8以上的分析,然后让你知道..
如果你对我的回答有任何疑问,你可以在上面发表评论。
发布于 2012-03-13 15:47:02
@op你能告诉我为什么你认为O(nlgn) = O(lg )吗?据我所知,您对Q2的分析b部分实际上是对O(lg )算法的分析,要分析nlgn算法,您需要将左边的n计算在内。
https://stackoverflow.com/questions/9678728
复制相似问题