所以我创建了自己的神经网络,我想对它做一个关于输入变量的自动微分。我的神经网络代码是这样的
n_input = 1
n_hidden_1 = 50
n_hidden_2 = 50
n_output = 1
weights = {
'h1': tf.Variable(tf.random.normal([n_input, n_hidden_1],0,0.5)),
'h2': tf.Variable(tf.random.normal([n_hidden_1, n_hidden_2],0,0.5)),
'out': tf.Variable(tf.random.normal([n_hidden_2, n_output],0,0.5))
}
biases = {
'b1': tf.Variable(tf.random.normal([n_hidden_1],0,0.5)),
'b2': tf.Variable(tf.random.normal([n_hidden_2],0,0.5)),
'out': tf.Variable(tf.random.normal([n_output],0,0.5))
}
def multilayer_perceptron(x):
x = np.array([[[x]]], dtype='float32')
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.tanh(layer_1)
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.tanh(layer_2)
output = tf.matmul(layer_2, weights['out']) + biases['out']
return output在tf.GradientTape()中,我尝试用这个来区分神经网络
x = tf.Variable(1.0)
with tf.GradientTape() as tape:
y = multilayer_perceptron(x)
dNN1 = tape.gradient(y,x)
print(dNN1)这就导致了None。我在这里做错了什么?
发布于 2021-07-25 00:44:20
因为您通过np.array将x转换为numpy数组,这是不可微的。
像这样修改你的代码:
def multilayer_perceptron(x):
#x = np.array([[[x]]], dtype='float32') #comment
layer_1 = tf.add(tf.matmul([[[x]]], weights['h1']), biases['b1']) #change x shape by adding []
layer_1 = tf.nn.tanh(layer_1)
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.tanh(layer_2)
output = tf.matmul(layer_2, weights['out']) + biases['out']
return output发布于 2021-07-25 01:12:00
为了更好地运行一些tensorflow操作,最好操作的所有元素都是tf.tensor类型,您必须使用
def multilayer_perceptron(x):
x = tf.reshape(x , (1,1,1))https://stackoverflow.com/questions/68511708
复制相似问题