首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >用于查找大于当前元素的第一个未来元素的Numpy矢量化算法

用于查找大于当前元素的第一个未来元素的Numpy矢量化算法
EN

Stack Overflow用户
提问于 2011-10-26 06:52:31
回答 2查看 1.1K关注 0票数 4

我有一个时间序列A,我想生成另一个时间序列B,这样

Bi = j,其中j是大于i的第一个索引,使得Aj > Ai。

在numpy中有没有一种快速的方法来做到这一点?

谢谢。

编辑:最好只使用O(n)的空间。

EN

回答 2

Stack Overflow用户

回答已采纳

发布于 2011-10-26 07:11:46

测试不足,使用风险自负。

代码语言:javascript
复制
import numpy

a = numpy.random.random(100)

# a_by_a[i,j] = a[i] > a[j]
a_by_a = a[numpy.newaxis,:] > a[:,numpy.newaxis]
# by taking the upper triangular, we ignore all cases where i < j
a_by_a = numpy.triu(a_by_a)
# argmax will give the first index with the highest value (1 in this case)
print numpy.argmax(a_by_a, axis = 1)

较低的内存版本:

代码语言:javascript
复制
a = numpy.random.random(100)

@numpy.vectorize
def values(i):
    try:
        return (a[i:] > a[i]).nonzero()[0][0] + i
    except IndexError:
        return -1 # no valid values found

b = values(numpy.arange(100))

更快的版本:

代码语言:javascript
复制
@np.vectorize
def values(i):
    try:
        return next(idx for idx, value in enumerate(A[i+1:]) if value > A[i]) + i + 1
    except StopIteration:
        return -1 # no valid values found
return values(np.arange(len(A)))

更快的版本:

代码语言:javascript
复制
def future6(A):
    # list of tuples (index into A, value in A)
    # invariant: indexes and values in sorted order
    known = []
    result = []
    for idx in xrange(len(A) - 1, -1, -1):
        value = A[idx]
        # since known is sorted a binary search could be applied here
        # I haven't bothered

        # anything lower then the current value
        # cannot possibly be used again, since this value will be first index instead
        # of those
        known = [(x,y) for x,y in known if y > value]


        if known: 
            # all values in known are > current value
            # they reverse sorted by index               
            # the value with the lowest index is first
            result.append(known[-1][0])
        else:
            # no values exist this high, report -1
            result.append(-1)
        # add to end of the list to maintain invariant
        known.append( (idx, value) )

    # let numpy worry about reversing the array
    return np.array(result)[::-1]

这里使用的一些想法归功于半机械人。

算法差分

cyborg显示了不同算法之间的显着差异,这取决于输入的数据。我从运行的算法中收集了一些统计数据,看看是否可以弄清楚发生了什么。

随机数据:

代码语言:javascript
复制
Average distance between value and its target: 9
Average length of ascends list: 24
Average length of segment in ascends list: 1.33
Average length of known list: 9.1

由于列表非常短,因此递增算法大多衰减为线性搜索。它确实清除了不能在未来使用的上升,所以它仍然比线性搜索要好得多。

振荡:

代码语言:javascript
复制
Average distance between value and its target: 31.46
Average length of ascends list: 84
Average length of segment in ascends list: 1.70
Average length of known list: 57.98

这种振荡倾向于将不同的部分分开得更远。这自然会阻碍线性搜索算法。这两种“更聪明”的算法都必须跟踪额外的数据。我的算法衰减很大,因为它每次都会扫描数据。ascends算法涉及的数据较少,并且执行得更好。

升序:

代码语言:javascript
复制
Average distance between value and its target: 2.57
Average length of ascends list: 40
Average length of segment in ascends list: 3.27
Average length of known list: 3037.97

这就是为什么我的算法会有问题,它必须跟踪大量的升级值。值和目标之间的短距离解释了线性搜索的良好性能。Ascends仍然不能处理很长的片段。

更好的算法

我的算法没有理由必须对数据进行线性搜索。它是经过排序的,我们只需要从列表的末尾删除较小的值。

代码语言:javascript
复制
def future6(A):
    # list of tuples (index into A, value in A)
    # invariant: indexes and values in sorted order
    known = []
    result = []
    for idx in xrange(len(A) - 1, -1, -1):
        value = A[idx]
        # since known is sorted a binary search could be applied here
        # I haven't bothered

        # anything lower then the current value
        # cannot possibly be used again, since this value will be first index instead
        # of those
        while known and known[-1][1] < value:
            known.pop()


        if known: 
            # all values in known are > current value
            # they reverse sorted by index               
            # the value with the lowest index is first
            result.append(known[-1][0])
        else:
            # no values exist this high, report -1
            result.append(-1)
        # add to end of the list to maintain invariant
        known.append( (idx, value) )

    # let numpy worry about reversing the array
    return np.array(result)[::-1]

但在我看来,我们可以重用以前计算出的B的值,而不是构造新的数据结构。如果j> i,Ai > Aj,则Bi > Bj。

代码语言:javascript
复制
def future8(A):
    B = [-1] * len(A)
    for index in xrange(len(A)-2, -1, -1):
        target = index + 1
        value = A[index]
        while target != -1 and A[target] < value:
            target = B[target]
        B[index] = target
    return np.array(B)

我的基准测试结果:

代码语言:javascript
复制
Random series:
future2 ascends  : 0.242569923401
future6 full list: 0.0363488197327
future7 vectorize: 0.129994153976
future8 reuse: 0.0299410820007
Oscillating series:
future2 ascends  : 0.233623981476
future6 full list: 0.0360488891602
future7 vectorize: 1.19140791893
future8 reuse: 0.0297570228577
Ascending trend series:
future2 ascends  : 0.120707035065
future6 full list: 0.0314049720764
future7 vectorize: 0.0640320777893
future8 reuse: 0.0246520042419

升序部分

赛博格有一个非常有趣的想法,就是利用提升的部分。我不认为他的任何测试用例真正展示了他在那之后的行为。我不认为这些部分足够长,无法充分利用。但我认为真正的数据可能会有这样的部分,所以利用它将会非常有帮助。

但我不认为它会起作用。准备进行二进制搜索所需的数据需要O(n)时间。如果我们多次执行二进制搜索,这将是很好的,但是一旦我们在升序部分的中间找到一个值,我们就永远不会重新访问左边的任何东西。因此,即使使用二进制搜索,我们处理数据的时间也最多为O(n)。

如果构建必要的数据比稍后扫描上升部分的成本更低,那么它可以工作。但扫描相当便宜,你很难想出一种更便宜的方法来处理升降节。

票数 9
EN

Stack Overflow用户

发布于 2011-10-27 05:03:17

@Winston Ewert的future8方法是O(n) (!),比我们之前所有的建议都要好。为了证明它是O(n),观察内部while循环对任何B[target]值最多执行一次。

我以前的回答是:

以下是三种方法的基准(在@Winston Ewert和我之间的乒乓球之后):

使用二进制搜索的

  1. 升序列表。(future2)
  2. Full list (future6,@Winston Ewert的future7,@Winston Ewert 's future5的增强版本)。

在不同的条件下,每种方法都比其他方法快得多。如果序列是随机的,那么“完整列表”(future6)是最快的。如果序列振荡,那么“升序列表”(future2)是最快的。如果序列趋于上升,那么矢量化(future7)是最快的。

如果数据是股票行情,我会选择“矢量化”(future7),因为股票有上升的趋势,而且它很简单,在所有条件下都表现合理。

输出:

代码语言:javascript
复制
Random series:
future2 ascends  : 0.210215095646
future6 full list: 0.0920153693145
future7 vectorize: 0.138747922771
Oscillating series:
future2 ascends  : 0.208349650159
future6 full list: 0.940276050999
future7 vectorize: 0.597290143496
Ascending trend series:
future2 ascends  : 0.131106233627
future6 full list: 20.7201531342
future7 vectorize: 0.0540951244451

代码:

代码语言:javascript
复制
import numpy as np
import time 
import timeit

def future2(A):    
    def reverse_enum(L):
        for index in reversed(xrange(len(L))):
            yield len(L)-index-1, L[index]
    def findnext(x, A, ascends): # find index of first future number greater than x
        for idx, segment in reverse_enum(ascends):
            joff=A[segment[0]:segment[1]+1].searchsorted(x,side='right') # binary search
            if joff < (segment[1]-segment[0]+1):
                j=segment[0]+joff
                [ascends.pop() for _ in range(idx)] # delete previous segments
                segment[0]=j # cut beginning of segment 
                return j
        return -1
    B = np.arange(len(A))+1
    # Note: B[i]=-1 where there is no greater value in the future.
    B[-1] = -1 # put -1 at the end
    ascends = [] # a list of pairs of indexes, ascending segments of A
    maximum = True
    for i in xrange(len(A)-2,-1,-1): # scan backwards
        #print(ascends)
        if A[i] < A[i+1]:
            if maximum:
                ascends.append([i+1,i+1])
                maximum = False
            else:
                ascends[-1][0] = i+1
        else:# A[i] >= A[i+1]
            B[i] = findnext(A[i], A, ascends)
            maximum = True
    return B


def future6(A):
    # list of tuples (index into A, value in A)
    # invariant: indexes and values in sorted order
    known = []
    result = []
    for idx in xrange(len(A) - 1, -1, -1):
        value = A[idx]
        # since known is sorted a binary search could be applied here
        # I haven't bothered

        # anything lower then the current value
        # cannot possibly be used again, since this value will be first index instead
        # of those
        known = [(x,y) for x,y in known if y > value]


        if known: 
            # all values in known are > current value
            # they reverse sorted by index               
            # the value with the lowest index is first
            result.append(known[-1][0])
        else:
            # no values exist this high, report -1
            result.append(-1)
        # add to end of the list to maintain invariant
        known.append( (idx, value) )

    # let numpy worry about reversing the array
    return np.array(result)[::-1]


def future7(A):
    @np.vectorize
    def values(i):
        for idx, v in enumerate(A[i+1:]): # loop is faster than genexp with exception
            if A[i]<v:
                return idx+i+1
        return -1
    return values(np.arange(len(A)))

if __name__ == '__main__':
    print('Random series:')
    tsetup = """import future; import numpy; A = numpy.random.random(1e4)"""
    t = timeit.timeit('future.future2(A)', tsetup, number=3)
    print('future2 ascends  : '+str(t))
    t = timeit.timeit('future.future6(A)', tsetup, number=3)
    print('future6 full list: '+str(t))
    t = timeit.timeit('future.future7(A)', tsetup, number=3)
    print('future7 vectorize: '+str(t))

    print('Oscillating series:')
    tsetup = """import future; import numpy; A = numpy.random.randint(1e5,size=1e4)-5e4; A = A.cumsum()"""
    t = timeit.timeit('future.future2(A)', tsetup, number=3)
    print('future2 ascends  : '+str(t))
    t = timeit.timeit('future.future6(A)', tsetup, number=3)
    print('future6 full list: '+str(t))
    t = timeit.timeit('future.future7(A)', tsetup, number=3)
    print('future7 vectorize: '+str(t))

    print('Ascending trend series:')
    tsetup = """import future; import numpy; A = numpy.random.randint(1e5,size=1e4)-3e4; A = A.cumsum()"""
    t = timeit.timeit('future.future2(A)', tsetup, number=3)
    print('future2 ascends  : '+str(t))
    t = timeit.timeit('future.future6(A)', tsetup, number=3)
    print('future6 full list: '+str(t))
    t = timeit.timeit('future.future7(A)', tsetup, number=3)
    print('future7 vectorize: '+str(t))
票数 2
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/7896812

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档