首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >使用DFT的卷积

使用DFT的卷积
EN

Stack Overflow用户
提问于 2012-12-20 00:52:05
回答 2查看 2.5K关注 0票数 2

我正在使用下面的代码来计算具有指定内核的图像的卷积(在我的例子中是高斯)。每次我得到一个不同的结果,结果图像甚至不接近我在空间域中通过卷积获得的图像。首先,我认为问题出在图像的数据类型上。我将它们更改为32和64,但结果仍然相同。有人能告诉我哪里会出问题吗?

http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html#dft上面的函数给了我一个黑色的图像。我的输入是灰度的。

代码语言:javascript
运行
复制
void convol_fft(const Mat& A,const vector<vector<float>>& kernel2d,Mat& result)
{

    Mat B = Mat(3,3,CV_64F);
    for (int row = 0; row < kernel2d.size(); row++)
        for (int col = 0; col < kernel2d[row].size(); col++){
            B.at<uchar>(row,col) = (uchar)kernel2d[row][col];
        }

    int dft_M = getOptimalDFTSize( A.rows+B.rows-1 );
    int dft_N = getOptimalDFTSize( A.cols+B.cols-1 );
    Mat dft_A = Mat::zeros(dft_M, dft_N, CV_64F);
    Mat dft_B = Mat::zeros(dft_M, dft_N, CV_64F);

    Mat dft_A_part = dft_A(Rect(0, 0, A.cols,A.rows));
    A.convertTo(dft_A_part, dft_A_part.type(), 1, -mean(A)[0]);
    Mat dft_B_part = dft_B(Rect(0, 0, B.cols,B.rows));
    B.convertTo(dft_B_part, dft_B_part.type(), 1, -mean(B)[0]);

    dft(dft_A, dft_A, 0, A.rows);
    dft(dft_B, dft_B, 0, B.rows);

    // set the last parameter to false to compute convolution instead of correlation
    mulSpectrums( dft_A, dft_B, dft_A, 0, false );
    idft(dft_A, dft_A, DFT_SCALE, A.rows + B.rows - 1 );

    result = dft_A(Rect(0, 0, A.cols + B.cols - 1, A.rows + B.rows - 1));
    normalize(result, result, 0, 1, NORM_MINMAX, result.type());
    pow(result, 3., result);

  //  B ^= Scalar::all(255);

}
EN

回答 2

Stack Overflow用户

回答已采纳

发布于 2012-12-20 21:58:15

我不确定OpenCV...but,这看起来很可疑。

代码语言:javascript
运行
复制
for (int row = 0; row < kernel2d.size(); row++)
    for (int col = 0; col < kernel2d[row].size(); col++){
        B.at<uchar>(row,col) = (uchar)kernel2d[row][col];
 }

如果您正在填充B内核,那么行应该是kernel2dcol.size()。看起来你正在超载B内核。kernel2d.size()的值是什么?

为什么不直接加载值呢?保存所有函数调用。

对于高斯核,它应该类似于{1,2,1,2,3,2,1,2,1,1,1}。

票数 0
EN

Stack Overflow用户

发布于 2015-03-09 20:51:07

以下基于openCV的phaseCorrelateRes()的代码将在2个维度上进行关联。

代码语言:javascript
运行
复制
static void fftShift(InputOutputArray _out)
{
    Mat out = _out.getMat();

    if(out.rows == 1 && out.cols == 1)
    {
        // trivially shifted.
        return;
    }

    vector<Mat> planes;
    split(out, planes);

    int xMid = out.cols >> 1;
    int yMid = out.rows >> 1;

    bool is_1d = xMid == 0 || yMid == 0;

    if(is_1d)
    {
        xMid = xMid + yMid;

        for(size_t i = 0; i < planes.size(); i++)
        {
            Mat tmp;
            Mat half0(planes[i], Rect(0, 0, xMid, 1));
            Mat half1(planes[i], Rect(xMid, 0, xMid, 1));

            half0.copyTo(tmp);
            half1.copyTo(half0);
            tmp.copyTo(half1);
        }
    }
    else
    {
        for(size_t i = 0; i < planes.size(); i++)
        {
            // perform quadrant swaps...
            Mat tmp;
            Mat q0(planes[i], Rect(0,    0,    xMid, yMid));
            Mat q1(planes[i], Rect(xMid, 0,    xMid, yMid));
            Mat q2(planes[i], Rect(0,    yMid, xMid, yMid));
            Mat q3(planes[i], Rect(xMid, yMid, xMid, yMid));

            q0.copyTo(tmp);
            q3.copyTo(q0);
            tmp.copyTo(q3);

            q1.copyTo(tmp);
            q2.copyTo(q1);
            tmp.copyTo(q2);
        }
    }

    merge(planes, out);
}

void Correlate2d(
    const cv::Mat& src1, 
    const cv::Mat& src2, 
    cv::Mat& dst,
    double* response)
{

    CV_Assert( src1.type() == src2.type());
    CV_Assert( src1.type() == CV_32FC1 || src1.type() == CV_64FC1 );
    CV_Assert( src1.size == src2.size);

    int M = getOptimalDFTSize(src1.rows);
    int N = getOptimalDFTSize(src1.cols);

    Mat padded1, padded2, paddedWin;

    if(M != src1.rows || N != src1.cols)
    {
        copyMakeBorder(src1, padded1, 0, M - src1.rows, 0, N - src1.cols, BORDER_CONSTANT, Scalar::all(0));
        copyMakeBorder(src2, padded2, 0, M - src2.rows, 0, N - src2.cols, BORDER_CONSTANT, Scalar::all(0));
    }
    else
    {
        padded1 = src1;
        padded2 = src2;
    }

    Mat FFT1, FFT2, P, Pm, C;

    // correlation equation
    // Reference: http://en.wikipedia.org/wiki/Phase_correlation
    dft(padded1, FFT1, DFT_REAL_OUTPUT);
    dft(padded2, FFT2, DFT_REAL_OUTPUT);

    mulSpectrums(FFT1, FFT2, dst, 0, true);
    idft(dst, dst, DFT_SCALE); // gives us the correlation result...
    fftShift(dst); // shift the energy to the center of the frame.

    // locate the highest peak
    Point peakLoc;
    minMaxLoc(dst, NULL, NULL, NULL, &peakLoc);

    // max response is scaled
    if( response )
        *response = dst.at<float>(peakLoc);
}

你可以在\opencv\sources\modules\imgproc\src\phasecorr.cpp中找到代码

要将代码更改为卷积,只需更改以下行:

代码语言:javascript
运行
复制
mulSpectrums(FFT1, FFT2, dst, 0, true);

代码语言:javascript
运行
复制
mulSpectrums(FFT1, FFT2, dst, 0, false);

这相当于在matlab中执行以下操作:

代码语言:javascript
运行
复制
dst = fftshift(ifft2(fft2(src1).*conj(fft2(src2))))
票数 1
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/13957212

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档