首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >在大数据集中查找重复项

在大数据集中查找重复项
EN

Stack Overflow用户
提问于 2017-01-10 16:56:28
回答 1查看 99关注 0票数 1

我有一个数据集,里面有关于控制系统故障的数据。这些数据的结构如下:

代码语言:javascript
运行
复制
TYPE OF FAILURE (string), START DATE (dd/mm/yyyy), START TIME (hh/mm/ss), DURATION (ss), LOCALIZATION (string), WORKING TEAM (A,B,C), SHIFT (morning, afternoon, night)

包含数据的表有555000行。首先,我想分析一下关于开始日期参数是否有重复的故障序列。基本上,我希望找到这样的东西:

3月10日出现故障1,3月15日出现故障2,间隔5天。然后在4月10日和4月15日出现了故障1,这也是它们之间的5天。故障1出现在5月10日和5月15日之间,间隔为5天。然而,故障1也可能出现在不同的日期,但对我来说,有趣的是,有更大的可能性,故障2将在故障1之后5天出现,并且这些事件(F1->F2)之间的时间间隔为一个月。

我不知道我的解释是否足够清楚。然而,我正在寻找合适的方法/算法,以便能够从上面描述的数据中提取这样的序列。你能告诉我一些方法吗?或者让我们一起集思广益:)。感谢您的帮助。

PS:我计划用C#或MATLAB (取决于合适的方法)实现这一点,谢谢。

EN

回答 1

Stack Overflow用户

发布于 2017-01-10 19:07:38

你的文件看起来像一个很大的CSV,因为matlab有一个很好的Data Store实现

https://es.mathworks.com/help/matlab/import_export/what-is-a-datastore.html

并具有用于处理大文件的以下工具:

https://es.mathworks.com/help/matlab/large-files-and-big-data.html

,还要看一看working with tables in matlab

在您的示例中,您可以执行以下操作:

示例文件airlinessmall.csv (123524行)

代码语言:javascript
运行
复制
Year,Month,DayofMonth,DayOfWeek,DepTime,CRSDepTime,ArrTime,CRSArrTime,UniqueCarrier,FlightNum,TailNum,ActualElapsedTime,CRSElapsedTime,AirTime,ArrDelay,DepDelay,Origin,Dest,Distance,TaxiIn,TaxiOut,Cancelled,CancellationCode,Diverted,CarrierDelay,WeatherDelay,NASDelay,SecurityDelay,LateAircraftDelay
1987,10,21,3,642,630,735,727,PS,1503,NA,53,57,NA,8,12,LAX,SJC,308,NA,NA,0,NA,0,NA,NA,NA,NA,NA
1987,10,26,1,1021,1020,1124,1116,PS,1550,NA,63,56,NA,8,1,SJC,BUR,296,NA,NA,0,NA,0,NA,NA,NA,NA,NA
1987,10,23,5,2055,2035,2218,2157,PS,1589,NA,83,82,NA,21,20,SAN,SMF,480,NA,NA,0,NA,0,NA,NA,NA,NA,NA
1987,10,23,5,1332,1320,1431,1418,PS,1655,NA,59,58,NA,13,12,BUR,SJC,296,NA,NA,0,NA,0,NA,NA,NA,NA,NA
1987,10,22,4,629,630,746,742,PS,1702,NA,77,72,NA,4,-1,SMF,LAX,373,NA,NA,0,NA,0,NA,NA,NA,NA,NA
1987,10,28,3,1446,1343,1547,1448,PS,1729,NA,61,65,NA,59,63,LAX,SJC,308,NA,NA,0,NA,0,NA,NA,NA,NA,NA
1987,10,8,4,928,930,1052,1049,PS,1763,NA,84,79,NA,3,-2,SAN,SFO,447,NA,NA,0,NA,0,NA,NA,NA,NA,NA
1987,10,10,6,859,900,1134,1123,PS,1800,NA,155,143,NA,11,-1,SEA,LAX,954,NA,NA,0,NA,0,NA,NA,NA,NA,NA

...

有了数据存储,你可以将数据作为表格来处理,并获得所需的变量,例如,要获得到达延迟的平均值:

代码语言:javascript
运行
复制
>> ds = datastore('airlinesmall.csv','TreatAsMissing','NA');
>> ds.MissingValue = 0;
>> ds.SelectedVariableNames = 'ArrDelay';
>> data = preview(ds)

data = 

    ArrDelay
    ________

     8      
     8      
    21      
    13      
     4      
    59      
     3      
    11      

>> data % this is a table

data = 

    ArrDelay
    ________

     8      
     8      
    21      
    13      
     4      
    59      
     3      
    11      

>> sums = [];
counts = [];
while hasdata(ds)
    T = read(ds); % this is a table, but this is not all loaded in memory

    sums(end+1) = sum(T.ArrDelay);
    counts(end+1) = length(T.ArrDelay);
end

>> avgArrivalDelay = sum(sums)/sum(counts)

avgArrivalDelay =

    6.9670

让我们来处理你的样本。检查此文件:

sample.csv

代码语言:javascript
运行
复制
TYPE OF FAILURE, START DATE, START TIME, DURATION, LOCALIZATION, WORKING TEAM, SHIFT
failure 1, 06/01/2017, 12/13/20, 300,  Area 1, A, morning
failure 2, 06/01/2017, 12/13/20, 300,  Area 1, A, night
failure 3, 06/01/2017, 12/13/20, 400,  Area 1, A, afternoon
failure 1, 08/01/2017, 12/13/20, 300,  Area 1, A, morning
failure 2, 09/01/2017, 12/13/20, 300,  Area 1, A, morning
failure 3, 09/01/2017, 12/13/20, 300,  Area 1, A, night
failure 3, 09/01/2017, 14/13/20, 200,  Area 1, A, morning
failure 1, 10/01/2017, 12/13/20, 300,  Area 1, A, morning
failure 1, 12/01/2017, 12/13/20, 300,  Area 1, A, afternoon
failure 2, 12/01/2017, 12/13/20, 500,  Area 1, A, morning
failure 1, 14/01/2017, 12/13/20, 300,  Area 1, A, night

你可以看到失败1是每隔两天发生一次,让我们看看这个:

代码语言:javascript
运行
复制
>> ds = tabularTextDatastore('sample.csv')
Warning: Variable names were modified to make them valid MATLAB identifiers. 

ds = 

  TabularTextDatastore with properties:

                      Files: {
                             '/home/anquegi/learn/matlab/stackoverflow/sample.csv'
                             }
               FileEncoding: 'UTF-8'
          ReadVariableNames: true
              VariableNames: {'TYPEOFFAILURE', 'STARTDATE', 'STARTTIME' ... and 4 more}

  Text Format Properties:
             NumHeaderLines: 0
                  Delimiter: ','
               RowDelimiter: '\r\n'
             TreatAsMissing: ''
               MissingValue: NaN

  Advanced Text Format Properties:
            TextscanFormats: {'%q', '%q', '%q' ... and 4 more}
         ExponentCharacters: 'eEdD'
               CommentStyle: ''
                 Whitespace: ' \b\t'
    MultipleDelimitersAsOne: false

  Properties that control the table returned by preview, read, readall:
      SelectedVariableNames: {'TYPEOFFAILURE', 'STARTDATE', 'STARTTIME' ... and 4 more}
            SelectedFormats: {'%q', '%q', '%q' ... and 4 more}
                   ReadSize: 20000 rows

>> ds.SelectedVariableNames = {'TYPEOFFAILURE', 'STARTDATE', 'STARTTIME', 'DURATION', 'LOCALIZATION', 'WORKINGTEAM', 'SHIFT'}

ds = 

  TabularTextDatastore with properties:

                      Files: {
                             '/home/anquegi/learn/matlab/stackoverflow/sample.csv'
                             }
               FileEncoding: 'UTF-8'
          ReadVariableNames: true
              VariableNames: {'TYPEOFFAILURE', 'STARTDATE', 'STARTTIME' ... and 4 more}

  Text Format Properties:
             NumHeaderLines: 0
                  Delimiter: ','
               RowDelimiter: '\r\n'
             TreatAsMissing: ''
               MissingValue: NaN

  Advanced Text Format Properties:
            TextscanFormats: {'%q', '%q', '%q' ... and 4 more}
         ExponentCharacters: 'eEdD'
               CommentStyle: ''
                 Whitespace: ' \b\t'
    MultipleDelimitersAsOne: false

  Properties that control the table returned by preview, read, readall:
      SelectedVariableNames: {'TYPEOFFAILURE', 'STARTDATE', 'STARTTIME' ... and 4 more}
            SelectedFormats: {'%q', '%q', '%q' ... and 4 more}
                   ReadSize: 20000 rows

>> reset(ds)
accum = [];
while hasdata(ds)
    T = read(ds);
    accum = datetime(T(strcmp(T.TYPEOFFAILURE,'failure 1'),:).STARTDATE, 'InputFormat','dd/MM/yyyy');
    mean(diff(accum))
end

ans = 

   48:00:00

%恰好每48小时,然后你可以尝试任何你想要的东西

票数 0
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/41564809

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档