我有一个分类问题,我想测试所有可用的算法,以测试它们在解决该问题方面的性能。如果您知道下面列出的分类算法以外的任何分类算法,请在此处列出。
GradientBoostingClassifier()
DecisionTreeClassifier()
RandomForestClassifier()
LinearDiscriminantAnalysis()
LogisticRegression()
KNeighborsClassifier()
GaussianNB()
ExtraTreesClassifier()
BaggingClassifier()非常感谢您的帮助。
发布于 2019-03-05 01:18:24
答案没有提供分类器的完整列表,因此我在下面列出了它们
from sklearn.tree import ExtraTreeClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm.classes import OneClassSVM
from sklearn.neural_network.multilayer_perceptron import MLPClassifier
from sklearn.neighbors.classification import RadiusNeighborsClassifier
from sklearn.neighbors.classification import KNeighborsClassifier
from sklearn.multioutput import ClassifierChain
from sklearn.multioutput import MultiOutputClassifier
from sklearn.multiclass import OutputCodeClassifier
from sklearn.multiclass import OneVsOneClassifier
from sklearn.multiclass import OneVsRestClassifier
from sklearn.linear_model.stochastic_gradient import SGDClassifier
from sklearn.linear_model.ridge import RidgeClassifierCV
from sklearn.linear_model.ridge import RidgeClassifier
from sklearn.linear_model.passive_aggressive import PassiveAggressiveClassifier
from sklearn.gaussian_process.gpc import GaussianProcessClassifier
from sklearn.ensemble.voting_classifier import VotingClassifier
from sklearn.ensemble.weight_boosting import AdaBoostClassifier
from sklearn.ensemble.gradient_boosting import GradientBoostingClassifier
from sklearn.ensemble.bagging import BaggingClassifier
from sklearn.ensemble.forest import ExtraTreesClassifier
from sklearn.ensemble.forest import RandomForestClassifier
from sklearn.naive_bayes import BernoulliNB
from sklearn.calibration import CalibratedClassifierCV
from sklearn.naive_bayes import GaussianNB
from sklearn.semi_supervised import LabelPropagation
from sklearn.semi_supervised import LabelSpreading
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.svm import LinearSVC
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import LogisticRegressionCV
from sklearn.naive_bayes import MultinomialNB
from sklearn.neighbors import NearestCentroid
from sklearn.svm import NuSVC
from sklearn.linear_model import Perceptron
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.svm import SVC
from sklearn.mixture import DPGMM
from sklearn.mixture import GMM
from sklearn.mixture import GaussianMixture
from sklearn.mixture import VBGMM发布于 2017-01-25 21:46:44
您可能想要查看以下问题:
How to list all scikit-learn classifiers that support predict_proba()
公认的答案显示了在支持predict_probas方法的scikit中获得所有估计器的方法。只需迭代并打印所有名称,而不检查条件,您就会得到所有的估计器。(分类器、回归器、聚类等)
仅对于分类器,如下所示修改它以检查所有实现ClassifierMixin的类
from sklearn.base import ClassifierMixin
from sklearn.utils.testing import all_estimators
classifiers=[est for est in all_estimators() if issubclass(est[1], ClassifierMixin)]
print(classifiers)对于版本>= 0.22,请使用this
from sklearn.utils import all_estimators代替sklearn.utils.testing
注意事项:
中删除
在使用它们之前,您应该检查它们各自的参考文档
发布于 2020-08-10 16:10:50
另一种选择是使用模块from sklearn.utils import all_estimators。下面是一个导入所有分类器的示例:
from sklearn.utils import all_estimators
estimators = all_estimators(type_filter='classifier')
all_clfs = []
for name, ClassifierClass in estimators:
print('Appending', name)
try:
clf = ClassifierClass()
all_clfs.append(clf)
except Exception as e:
print('Unable to import', name)
print(e)用它工作的Here's a colab code。
https://stackoverflow.com/questions/41844311
复制相似问题