首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >如何在中获取单词矢量坐标

如何在中获取单词矢量坐标
EN

Stack Overflow用户
提问于 2017-03-22 13:14:38
回答 1查看 603关注 0票数 1

我试着制作单词嵌入图,我做到了,但我想得到图中每个单词向量的坐标。这意味着,例如,我想要获得显示单词的每个坐标

example

我使用了python,tensorflow,我的代码是下面的一个例子,这是github中的一个例子,我应该怎么做才能找到坐标?为了安全起见,我附加了代码

代码语言:javascript
运行
复制
# -*- coding: UTF-8 -*-

from __future__ import absolute_import
from __future__ import print_function


import collections
import math
import os
import random
import zipfile

import numpy as np
from six.moves import urllib
from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf

import matplotlib
import matplotlib.font_manager as fm
font_location = "c:\\windows\\fonts\\malgun.ttf"
font_name = fm.FontProperties(fname=font_location).get_name()
matplotlib.rc('font', family=font_name)


# Step 1
filename = "text8.zip"

def read_data(filename):
  with zipfile.ZipFile(filename) as f:
    data = f.read(f.namelist()[0]).split()
    for i, item in enumerate(data):
        data[i] = item.decode('utf-8')
  return data

words = read_data(filename)
print('Data size', len(words))

# Step 2
vocabulary_size = 10000

def build_dataset(words):
  count = [['UNK', -1]]
  count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
  dictionary = dict()
  for word, _ in count:
    dictionary[word] = len(dictionary)
  data = list()
  unk_count = 0
  for word in words:
    if word in dictionary:
      index = dictionary[word]
    else:
      index = 0  # dictionary['UNK']
      unk_count += 1
    data.append(index)
  count[0][1] = unk_count
  reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
  return data, count, dictionary, reverse_dictionary

data, count, dictionary, reverse_dictionary = build_dataset(words)
del words  # Hint to reduce memory.
print('Most common words (+UNK)', count[:5])
print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]])

data_index = 0

# Step 3
def generate_batch(batch_size, num_skips, skip_window):
  global data_index
  assert batch_size % num_skips == 0
  assert num_skips <= 2 * skip_window
  batch = np.ndarray(shape=(batch_size), dtype=np.int32)
  labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
  span = 2 * skip_window + 1 # [ skip_window target skip_window ]
  buffer = collections.deque(maxlen=span)
  for _ in range(span):
    buffer.append(data[data_index])
    data_index = (data_index + 1) % len(data)
  for i in range(batch_size // num_skips):
    target = skip_window  # target label at the center of the buffer
    targets_to_avoid = [ skip_window ]
    for j in range(num_skips):
      while target in targets_to_avoid:
        target = random.randint(0, span - 1)
      targets_to_avoid.append(target)
      batch[i * num_skips + j] = buffer[skip_window]
      labels[i * num_skips + j, 0] = buffer[target]
    buffer.append(data[data_index])
    data_index = (data_index + 1) % len(data)
  return batch, labels

batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1)
for i in range(8):
  print(batch[i], reverse_dictionary[batch[i]],
      '->', labels[i, 0], reverse_dictionary[labels[i, 0]])

# Step 4

batch_size = 128
embedding_size = 128  
skip_window = 1       
num_skips = 2        

valid_size = 16     
valid_window = 100  
valid_examples = np.random.choice(valid_window, valid_size, replace=False)
num_sampled = 64    

graph = tf.Graph()

with graph.as_default():


  train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
  train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
  valid_dataset = tf.constant(valid_examples, dtype=tf.int32)

  # Ops and variables pinned to the CPU because of missing GPU implementation
  with tf.device('/cpu:0'):

    embeddings = tf.Variable(
        tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))

    embed = tf.nn.embedding_lookup(embeddings, train_inputs)


    nce_weights = tf.Variable(
        tf.truncated_normal([vocabulary_size, embedding_size],
                            stddev=1.0 / math.sqrt(embedding_size)))
    nce_biases = tf.Variable(tf.zeros([vocabulary_size]))


  loss = tf.reduce_mean(
      tf.nn.nce_loss(nce_weights, nce_biases, embed, train_labels,
                     num_sampled, vocabulary_size))

  optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)

  norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
  normalized_embeddings = embeddings / norm
  valid_embeddings = tf.nn.embedding_lookup(
      normalized_embeddings, valid_dataset)
  similarity = tf.matmul(
      valid_embeddings, normalized_embeddings, transpose_b=True)

# Step 5
num_steps = 100001

with tf.Session(graph=graph) as session:

  tf.initialize_all_variables().run()
  print("Initialized")

  average_loss = 0
  for step in xrange(num_steps):
    batch_inputs, batch_labels = generate_batch(
        batch_size, num_skips, skip_window)
    feed_dict = {train_inputs : batch_inputs, train_labels : batch_labels}

    _, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)
    average_loss += loss_val

    if step % 2000 == 0:
      if step > 0:
        average_loss /= 2000
      print("Average loss at step ", step, ": ", average_loss)
      average_loss = 0

    # Note that this is expensive (~20% slowdown if computed every 500 steps)
    if step % 10000 == 0:
      sim = similarity.eval()
      for i in xrange(valid_size):
        valid_word = reverse_dictionary[valid_examples[i]]
        top_k = 8 
        nearest = (-sim[i, :]).argsort()[1:top_k+1]
        log_str = "Nearest to %s:" % valid_word
        for k in xrange(top_k):
          close_word = reverse_dictionary[nearest[k]]
          log_str = "%s %s," % (log_str, close_word)
        print(log_str)
  final_embeddings = normalized_embeddings.eval()


# Step 6

def plot_with_labels(low_dim_embs, labels, filename='tsne.png'):
  assert low_dim_embs.shape[0] >= len(labels), "More labels than embeddings"
  plt.figure(figsize=(18, 18))  #in inches
  for i, tmlab in enumerate(labels):
    # slabel = tmlab.decode('utf-8')
    x, y = low_dim_embs[i,:]
    plt.scatter(x, y)
    plt.annotate(tmlab,
                 xy=(x, y),
                 xytext=(5, 2),
                 textcoords='offset points',
                 ha='right',
                 va='bottom')

  plt.savefig(filename)

try:
  from sklearn.manifold import TSNE
  import matplotlib.pyplot as plt

  tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
  plot_only = 750
  low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only,:])
  labels = [reverse_dictionary[i] for i in xrange(plot_only)]
  plot_with_labels(low_dim_embs, labels)

except ImportError:
  print("Please install sklearn and matplotlib to visualize embeddings.")
EN

Stack Overflow用户

发布于 2017-03-27 16:52:50

您的嵌入维度可以是任意大的(50-300或更多)。但是,您希望将单词绘制在2维空间中。由于您的嵌入大小是128,这比2大得多,所以您需要将这些嵌入投影到2D空间中。解决这个问题的最著名的方法是T-SNE。您可以使用此Quora Answer中的代码。这对我很管用。如果这解决了你的问题,请投赞成票!

票数 0
EN
查看全部 1 条回答
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/42943268

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档