首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >正在还原Tensorflow模型:在检查点文件中找不到batch_norm图层的gamma/scale

正在还原Tensorflow模型:在检查点文件中找不到batch_norm图层的gamma/scale
EN

Stack Overflow用户
提问于 2017-05-06 04:50:13
回答 2查看 1.1K关注 0票数 0

我能够恢复一个模型,并从检查点文件中提取权重、偏差和batch_norm层的参数。然而,对于多个检查点文件(初始模型等),我找不到BN层的缩放/伽马因子。

例如,在公共inceptionV3检查点中,我可以找到:InceptionV3/Mixed_5d/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_mean (DT_FLOAT) [64] InceptionV3/Mixed_5d/Branch_2/Conv2d_0a_1x1/BatchNorm/moving_variance (DT_FLOAT) [64] InceptionV3/Mixed_5d/Branch_2/Conv2d_0a_1x1/BatchNorm/beta (DT_FLOAT) [64]

然而,没有像InceptionV3/Mixed_5d/Branch_2/Conv2d_0a_1x1/BatchNorm/gamma这样的东西。

如何获取伽马值或默认情况下将其重新缩放为1?

非常感谢!

EN

回答 2

Stack Overflow用户

发布于 2017-05-07 13:33:47

因此,大多数网络使用来自SLIM的batch_norm,默认情况下没有缩放/gamma参数。

scale:如果为真,则乘以gamma。如果为False,则不使用gamma。当下一层是线性的(也是nn.relu)时,这可以被禁用,因为缩放可以由下一层完成。

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/layers.py#L365-L386

票数 1
EN

Stack Overflow用户

发布于 2018-01-09 00:36:19

我也遇到了与slim库中预先训练好的inceptionV2相同的问题。

一开始我使用这个arg_scope,我遇到了这个问题:

代码语言:javascript
复制
def _batch_norm_arg_scope(list_ops,
                          use_batch_norm=True,
                          batch_norm_decay=0.9997,
                          batch_norm_epsilon=0.001,
                          batch_norm_scale=False,
                          train_batch_norm=False):
    """Slim arg scope for InceptionV2 batch norm."""
    if use_batch_norm:
        batch_norm_params = {
            'is_training': train_batch_norm,
            'scale': batch_norm_scale,
            'decay': batch_norm_decay,
            'epsilon': batch_norm_epsilon
        }
        normalizer_fn = slim.batch_norm
    else:
        normalizer_fn = None
        batch_norm_params = None

    return slim.arg_scope(list_ops,
                          normalizer_fn=normalizer_fn,
                          normalizer_params=batch_norm_params)

我使用slim库中的arg_scope解决了这个问题。

代码语言:javascript
复制
with slim.arg_scope(inception_v2.inception_v2_arg_scope()):

这很简单:

代码语言:javascript
复制
def inception_arg_scope(weight_decay=0.00004,
                        use_batch_norm=True,
                        batch_norm_decay=0.9997,
                        batch_norm_epsilon=0.001,
                        activation_fn=tf.nn.relu):
  """Defines the default arg scope for inception models.

  Args:
    weight_decay: The weight decay to use for regularizing the model.
    use_batch_norm: "If `True`, batch_norm is applied after each convolution.
    batch_norm_decay: Decay for batch norm moving average.
    batch_norm_epsilon: Small float added to variance to avoid dividing by zero
      in batch norm.
    activation_fn: Activation function for conv2d.

  Returns:
    An `arg_scope` to use for the inception models.
  """
  batch_norm_params = {
      # Decay for the moving averages.
      'decay': batch_norm_decay,
      # epsilon to prevent 0s in variance.
      'epsilon': batch_norm_epsilon,
      # collection containing update_ops.
      'updates_collections': tf.GraphKeys.UPDATE_OPS,
      # use fused batch norm if possible.
      'fused': None,
  }
  if use_batch_norm:
    normalizer_fn = slim.batch_norm
    normalizer_params = batch_norm_params
  else:
    normalizer_fn = None
    normalizer_params = {}
  # Set weight_decay for weights in Conv and FC layers.
  with slim.arg_scope([slim.conv2d, slim.fully_connected],
                      weights_regularizer=slim.l2_regularizer(weight_decay)):
    with slim.arg_scope(
        [slim.conv2d],
        weights_initializer=slim.variance_scaling_initializer(),
        activation_fn=activation_fn,
        normalizer_fn=normalizer_fn,
        normalizer_params=normalizer_params) as sc:
      return sc
票数 1
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/43813549

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档