首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >使用keras和验证精度0.0000e+00的神经网络精度非常低

使用keras和验证精度0.0000e+00的神经网络精度非常低
EN

Stack Overflow用户
提问于 2017-11-10 14:00:44
回答 3查看 11.5K关注 0票数 4

下面是我正在使用的代码。请让我知道为什么我的验证和训练准确率如此之低?验证准确率仅为0.0000e+00,训练准确率约为37%。可能出了什么问题?我的训练集有10500行,172列。我的测试集有3150行,172列。我的第一列是响应(class),因此我只使用它作为Y,其余的列作为X。我的响应是3个类: default,LF和RF

代码语言:javascript
复制
from __future__ import print_function
import numpy as np
import pandas
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.optimizers import SGD
from keras.utils import np_utils
from sklearn.preprocessing import LabelEncoder
np.random.seed(1671)
NB_EPOCH = 5
BATCH_SIZE = 128
VERBOSE = 1
NB_CLASSES = 3
OPTIMIZER = SGD()
N_HIDDEN = 128
VALIDATION_SPLIT=0.1
RESHAPED = 171
dataframe_train = pandas.read_csv("TrainingEdgesToAction.csv", header=None)
dataset_train = dataframe_train.values
X_train = dataset_train[1:,1:172].astype(float)
#X_train = dataset_train[1:,0:172]
Y_train = dataset_train[1:,0]

dataframe_test = pandas.read_csv("TestingEdgesToAction.csv", header=None)
dataset_test = dataframe_test.values
X_test = dataset_test[1:,1:172].astype(float)
#X_test = dataset_test[1:,0:172]
Y_test = dataset_test[1:,0]

X_train = X_train.reshape(10500,RESHAPED)
X_test = X_test.reshape(3150,RESHAPED)
X_train /= 255
X_test /= 255
print(X_train.shape[0],'train samples')
print(X_test.shape[0],'test samples')

encoder = LabelEncoder()
encoder.fit(Y_train)
encoded_Y_train = encoder.transform(Y_train)
# convert integers to dummy variables (i.e. one hot encoded)
dummy_y_train = np_utils.to_categorical(encoded_Y_train)
print(dummy_y_train)

encoder = LabelEncoder()
encoder.fit(Y_test)
encoded_Y_test = encoder.transform(Y_test)
# convert integers to dummy variables (i.e. one hot encoded)
dummy_y_test = np_utils.to_categorical(encoded_Y_test)
print(dummy_y_test)

#Y_train = np_utils.to_categorical(Y_train,NB_CLASSES)
#Y_test = np_utils.to_categorical(Y_test, NB_CLASSES)

model = Sequential()
model.add(Dense(N_HIDDEN,input_shape=(RESHAPED,)))
model.add(Activation('relu'))
model.add(Dense(N_HIDDEN))
model.add(Activation('relu'))
model.add(Dense(NB_CLASSES))
model.add(Activation('softmax'))
model.summary()
model.compile(loss='categorical_crossentropy',optimizer=OPTIMIZER,metrics=
['accuracy'])
history = model.fit(X_train,dummy_y_train,batch_size=BATCH_SIZE,epochs=NB_EPOCH,shuffle=True,verbose=VERBOSE,validation_split=VALIDATION_SPLIT)
score = model.evaluate(X_test,dummy_y_test,verbose=VERBOSE)

print("\nTest score:",score[0])
print("Test accuracy:",score[1])

10500 train samples
3150 test samples
[[ 1.  0.  0.]
[ 1.  0.  0.]
[ 1.  0.  0.]
..., 
[ 0.  0.  1.]
[ 0.  0.  1.]
[ 0.  0.  1.]]
[[ 1.  0.  0.]
[ 1.  0.  0.]
[ 1.  0.  0.]
..., 
[ 0.  0.  1.]
[ 0.  0.  1.]
[ 0.  0.  1.]]
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_49 (Dense)             (None, 128)               22016     
_________________________________________________________________
activation_49 (Activation)   (None, 128)               0         
_________________________________________________________________
dense_50 (Dense)             (None, 128)               16512     
_________________________________________________________________
activation_50 (Activation)   (None, 128)               0         
_________________________________________________________________
dense_51 (Dense)             (None, 3)                 387       
_________________________________________________________________
activation_51 (Activation)   (None, 3)                 0         
=================================================================
Total params: 38,915
Trainable params: 38,915
Non-trainable params: 0
_________________________________________________________________
Train on 9450 samples, validate on 1050 samples
Epoch 1/5
9450/9450 [==============================] - 2s - loss: 1.0944 - acc: 0.3618 
- val_loss: 1.1809 - val_acc: 0.0000e+00
Epoch 2/5
9450/9450 [==============================] - 1s - loss: 1.0895 - acc: 0.3704 
- val_loss: 1.2344 - val_acc: 0.0000e+00
Epoch 3/5
9450/9450 [==============================] - 0s - loss: 1.0874 - acc: 0.3704 
- val_loss: 1.2706 - val_acc: 0.0000e+00
Epoch 4/5
9450/9450 [==============================] - 0s - loss: 1.0864 - acc: 0.3878 
- val_loss: 1.2955 - val_acc: 0.0000e+00
Epoch 5/5
9450/9450 [==============================] - 0s - loss: 1.0860 - acc: 0.3761 
- val_loss: 1.3119 - val_acc: 0.0000e+00
2848/3150 [==========================>...] - ETA: 0s
Test score: 1.10844093784
Test accuracy: 0.333333333333
EN

Stack Overflow用户

发布于 2021-04-22 12:34:41

我也遇到过类似的问题。请尝试打乱您的数据,这可以解决您的问题。

代码语言:javascript
复制
from sklearn.utils import shuffle
Xtrain, ytrain = shuffle(Xtrain, ytrain)
票数 0
EN
查看全部 3 条回答
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/47216529

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档