首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >R,选择降雨事件,并根据时间序列数据计算降雨事件总数

R,选择降雨事件,并根据时间序列数据计算降雨事件总数
EN

Stack Overflow用户
提问于 2018-07-17 07:04:40
回答 1查看 664关注 0票数 0

下面是我试图让代码实现的功能:

-identify数据集中唯一的降雨“事件”。我想从两个事件之间6个小时的事件间隔开始。

-My的攻击计划是创建一个列,该列将包含事件的唯一“标志”。事件标志或ID可以是事件的开始时间戳,或者仅仅是最后一个标识符(1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1)的n+1。我在获取这个唯一的标志部分时遇到了麻烦,因为我需要R在precip列中“向前看”,看看未来6小时内是否会下雨。如果是这样,它应该创建一个标志。

输出示例

Event ID Precip (in) Event STart事件停止时间(小时)

1 0.07 10-6 17:00 10-6 22:00 6:00

2 0.01 2017 10-7 15:00 10-7 15:00 1:00

3 0.15 10-10 11:00 10-10 13:00 3:00

代码语言:javascript
运行
复制
CODE
library(zoo) # to get rollsum fxn

DF1 <- read.csv("U:/R_files/EOF_Rainfall_Stats_2017- 
18/Precip_DF1_Oct17toMay18.csv")

DF1$event <- NA

DF1$event[DF1$Precip_in > 0] = "1"
DF1$event[DF1$Precip_in == 0] = "0"
str(DF1)
DF1$event <- as.numeric(DF1$event)
str(DF1)


DF1$rollsum6 <- round(rollsum(DF1$event, k=6, fill=NA, align="right"),5)


DF1$eventID <- NA
DF1$eventID <- ifelse(DF1$rollsum6 >= 2 & DF1$event == 1, "flag", "NA") 

原始数据

DateTime Precip_in

2017-10-6 13:00 0

2017-10-6 14:00 0

2017-10-6 15:00 0

2017-10-6 16:00 0

2017-10-6 17:00 0.04

2017-10-6 18:00 0

2017-10-6 19:00 0

2017-10-6 20:00 0

10/6/2017 21:00 0.01

10/6/2017 22:00 0.02

2017-10-6 23:00 0

2017-10-7 0:00 0

2017-10-7 1:00 0

2017-10-7 2:00 0

2017-10-7 3:00 0

2017-10-7 4:00 0

2017-10-7 5:00 0

2017-10-7 6:00 0

2017-10-7 7:00 0

2017-10-7 8:00 0

2017-10-7 9:00 0

2017-10-7 10:00 0

2017-10-7 11:00 0

2017-10-7 12:00 0

2017-10-7 13:00 0

2017-10-7 14:00 0

2017-10-7 15:00 0.01

EN

回答 1

Stack Overflow用户

发布于 2019-11-25 19:52:20

如果有人还在寻找解决这个问题的方法,这里是我的“整洁”方法。我将数据保存在一个名为data的变量中。

代码语言:javascript
运行
复制
library(dplyr)

# Set data column as POSIXct, important for calculating duration afterwards
data <- data %>% mutate(DateTime = as.POSIXct(DateTime, format = '%m/%d/%Y %H:%M'))

flags <- data %>% 
  # Set a rain flag if there is rain registered on the gauge
  mutate(rainflag = ifelse(Precip_in > 0, 1, 0)) %>% 
  # Create a column that contains the number of consecutive times there was rain or not.
  # Use `rle`` which indicates how many times consecutive values happen, and `rep`` to repeat it for each row.
  mutate(rainlength = rep(rle(rainflag)$lengths, rle(rainflag)$lengths)) %>% 
  # Set a flag for an event happening, when there is rain there is a rain event, 
  # when it is 0 but not for six consecutive times, it is still a rain event
  mutate(
    eventflag = ifelse(
      rainflag == 1, 
      1, 
      ifelse(
        rainflag == 0 & rainlength < 6, 
        1, 
        0
      )
    )
  ) %>% 
  # Correct for the case when the dataset starts with no rain for less than six consecutive times
  # If within the first six rows there is no rain registered, then the event flag should change to 0
  mutate(eventflag = ifelse(row_number() < 6 & rainflag == 0, 0, eventflag)) %>% 
  # Add an id to each event (rain or not), to group by on the pivot table
  mutate(eventid = rep(seq(1,length(rle(eventflag)$lengths)), rle(eventflag)$lengths))

rain_pivot <- flags %>% 
  # Select only the rain events
  filter(eventflag == 1) %>% 
  # Group by id
  group_by(eventid) %>% 
  summarize(
    precipitation = sum(Precip_in),
    eventStart = first(DateTime),
    eventEnd = last(DateTime)
  ) %>% 
  # Compute time difference as duration of event, add 1 hour, knowing that the timestamp is the time when the rain record ends
  mutate(time = as.numeric(difftime(eventEnd,eventStart, units = 'h')) + 1)

rain_pivot
#> # A tibble: 2 x 5
#>   eventid precipitation eventStart          eventEnd             time
#>     <int>         <dbl> <dttm>              <dttm>              <dbl>
#> 1       2          0.07 2017-10-06 17:00:00 2017-10-06 22:00:00     6
#> 2       4          0.01 2017-10-07 15:00:00 2017-10-07 15:00:00     1

票数 1
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/51371155

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档