是否可以根据特定索引值对pandas df的列进行排序?
price / time load_1 load_2 load_3 load_4
price 50, 68, 23, 12
2018-01-01 00:00:00 12, 65, 37, 8
2018-01-01 00:15:00 13, 54, 112, 6
2018-01-01 00:30:00 58, 12, 96, 4
(第一个索引是能源消耗的价格,而下面的几行代表能源的数量。列数未定义)
所以它基本上看起来像:
price / time load_2 load_1 load_3 load_4
price 68, 50, 23, 12
2018-01-01 00:00:00 65, 12, 37, 8
2018-01-01 00:15:00 54, 13, 112, 6
2018-01-01 00:30:00 12, 58, 96, 4
按价格指数以升序或降序对列进行排序。
发布于 2018-10-30 21:55:03
如果索引名称为price
,则将sort_values
与axis=1
一起使用
print (df.columns)
Index(['load_1', 'load_2', 'load_3', 'load_4'], dtype='object')
df = df.sort_values('price', axis=1, ascending=False)
print (df)
load_2 load_1 load_3 load_4
price / time
price 68 50 23 12
2018-01-01 00:00:00 65 12 37 8
2018-01-01 00:15:00 54 13 112 6
2018-01-01 00:30:00 12 58 96 4
如果列中的MultiIndex
使用DataFrame.sort_index
print (df.columns)
MultiIndex(levels=[['load_1', 'load_2', 'load_3', 'load_4'], ['12', '23', '50', '68']],
labels=[[0, 1, 2, 3], [2, 3, 1, 0]],
names=['price / time', 'price'])
df = df.sort_index(axis=1, level=1, ascending=False)
print (df)
price / time load_2 load_1 load_3 load_4
price 68 50 23 12
2018-01-01 00:00:00 65 12 37 8
2018-01-01 00:15:00 54 13 112 6
2018-01-01 00:30:00 12 58 96 4
同样,这里应该是问题是有必要将第二级转换为整数:
a = df.columns.get_level_values(0)
b = df.columns.get_level_values(1).astype(int)
df.columns = pd.MultiIndex.from_arrays([a,b], names=df.columns.names)
print (df.columns)
MultiIndex(levels=[['load_1', 'load_2', 'load_3', 'load_4'], [12, 23, 50, 68]],
labels=[[0, 1, 2, 3], [2, 3, 1, 0]],
names=['price / time', 'price'])
df = df.sort_index(axis=1, level=1, ascending=False)
print (df)
price / time load_2 load_1 load_3 load_4
price 68 50 23 12
2018-01-01 00:00:00 65 12 37 8
2018-01-01 00:15:00 54 13 112 6
2018-01-01 00:30:00 12 58 96 4
https://stackoverflow.com/questions/53065843
复制相似问题