首先,我做了一个关于情感分析分类器比较的项目。然后我想知道每个分类器特征的重要性。
发布于 2019-07-28 00:20:05
在K最近邻域的情况下,您可以同时使用一个特征进行拟合和预测,然后打印结果以查看哪个特征是最重要的。
使用虹膜数据集的示例:
import numpy as np
from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val_score
iris = datasets.load_iris() # the data
clf = KNeighborsClassifier() # the model
y = iris.target # the target vector
n_features = iris.data.shape[1]
print('Feature Index , Accuracy obtained')
for i in range(n_features):
X = iris.data[:, i].reshape(-1, 1)
scores = cross_val_score(clf, X, y, cv = 5, scoring='accuracy') # cross-validated accuracy
print('{} {}'.format(i, scores.mean()))上面的打印结果:
Feature Index , Accuracy obtained
0 0.646666666667
1 0.553333333333
2 0.946666666667
3 0.96https://stackoverflow.com/questions/57229256
复制相似问题