首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >如何通过yahoo导入熊猫的多个股票价格?

如何通过yahoo导入熊猫的多个股票价格?
EN

Stack Overflow用户
提问于 2020-05-26 02:49:40
回答 3查看 2.6K关注 0票数 1

因此,我正在尝试使用pandas和panadas datareader获取多个股票价格。如果我只尝试导入一个报价器,它会运行得很好,但如果我使用多个报价器,则会出现错误。代码是:

代码语言:javascript
运行
复制
import pandas as pd
import pandas_datareader as web
import datetime as dt
stocks = ['BA', 'AMD']
start = dt.datetime(2018, 1, 1)
end = dt.datetime(2020, 1, 1)
d = web.DataReader(stocks, 'yahoo', start, end) 

尽管我得到了错误:

代码语言:javascript
运行
复制
ValueError: Wrong number of items passed 2, placement implies 1

那么我怎么才能绕过它,只允许通过1只股票。到目前为止,我已经尝试使用quandl和谷歌,这也不起作用。我也尝试过pdr.get_data_yahoo,但我得到了同样的结果。我也尝试过yf.download(),但仍然遇到同样的问题。有没有人有什么办法来解决这个问题呢?谢谢。

编辑:完整代码:

代码语言:javascript
运行
复制
import pandas as pd
import pandas_datareader as web
import datetime as dt
import yfinance as yf
import numpy as np
stocks = ['BA', 'AMD', 'AAPL']
start = dt.datetime(2018, 1, 1)
end = dt.datetime(2020, 1, 1)
d = web.DataReader(stocks, 'yahoo', start, end)
d['sma50'] = np.round(d['Close'].rolling(window=2).mean(), decimals=2)
d['sma200'] = np.round(d['Close'].rolling(window=14).mean(), decimals=2)
d['200-50'] = d['sma200'] - d['sma50']
_buy = -2
d['Crossover_Long'] = np.where(d['200-50'] < _buy, 1, 0)
d['Crossover_Long_Change']=d.Crossover_Long.diff()
d['buy'] = np.where(d['Crossover_Long_Change'] == 1, 'buy', 'n/a')
d['sell'] = np.where(d['Crossover_Long_Change'] == -1, 'sell', 'n/a')
pd.set_option('display.max_rows', 5093)
d.drop(['High', 'Low', 'Close', 'Volume', 'Open'], axis=1, inplace=True)
d.dropna(inplace=True)
#make 2 dataframe
d.set_index(d['Adj Close'], inplace=True)
buy_price = d.index[d['Crossover_Long_Change']==1]
sell_price = d.index[d['Crossover_Long_Change']==-1]
d['Crossover_Long_Change'].value_counts()
profit_loss = (sell_price - buy_price)*10
commision = buy_price*.01
position_value = (buy_price + commision)*10
percent_return = (profit_loss/position_value)*100
percent_rounded = np.round(percent_return, decimals=2)
prices = { 
    "Buy Price" : buy_price,
    "Sell Price" : sell_price,
    "P/L" : profit_loss,
    "Return": percent_rounded
}
df = pd.DataFrame(prices)
print('The return was {}%, and profit or loss was ${} '.format(np.round(df['Return'].sum(), decimals=2), 
                                                               np.round(df['P/L'].sum(), decimals=2)))
d
EN

回答 3

Stack Overflow用户

发布于 2020-05-26 03:07:15

我在你的代码中尝试了3只股票,它返回了所有3只股票的数据,我不确定我是否理解了你面临的问题?

代码语言:javascript
运行
复制
import pandas as pd
import pandas_datareader as web
import datetime as dt
stocks = ['BA', 'AMD', 'AAPL']
start = dt.datetime(2018, 1, 1)
end = dt.datetime(2020, 1, 1)
d = web.DataReader(stocks, 'yahoo', start, end)
print(d)

输出:

代码语言:javascript
运行
复制
Attributes   Adj Close                              Close                         ...        Open                            Volume
Symbols             BA        AMD        AAPL          BA        AMD        AAPL  ...          BA        AMD        AAPL         BA          AMD        AAPL
Date                                                                              ...
2018-01-02  282.886383  10.980000  166.353714  296.839996  10.980000  172.259995  ...  295.750000  10.420000  170.160004  2978900.0   44146300.0  25555900.0
2018-01-03  283.801239  11.550000  166.324722  297.799988  11.550000  172.229996  ...  295.940002  11.610000  172.529999  3211200.0  154066700.0  29517900.0
2018-01-04  282.724396  12.120000  167.097290  296.670013  12.120000  173.029999  ...  297.940002  12.100000  172.539993  4171700.0  109503000.0  22434600.0
2018-01-05  294.322296  11.880000  168.999741  308.839996  11.880000  175.000000  ...  296.769989  12.190000  173.440002  6177700.0   63808900.0  23660000.0
2018-01-08  295.570740  12.280000  168.372040  310.149994  12.280000  174.350006  ...  308.660004  12.010000  174.350006  4124900.0   63346000.0  20567800.0
...                ...        ...         ...         ...        ...         ...  ...         ...        ...         ...        ...          ...         ...
2019-12-24  331.030457  46.540001  282.831299  333.000000  46.540001  284.269989  ...  339.510010  46.099998  284.690002  4120100.0   44432200.0  12119700.0
2019-12-26  327.968689  46.630001  288.442780  329.920013  46.630001  289.910004  ...  332.700012  46.990002  284.820007  4593400.0   57562800.0  23280300.0
2019-12-27  328.187408  46.180000  288.333313  330.140015  46.180000  289.799988  ...  330.200012  46.849998  291.119995  4124000.0   36581300.0  36566500.0
2019-12-30  324.469513  45.520000  290.044617  326.399994  45.520000  291.519989  ...  330.500000  46.139999  289.459991  4525500.0   41149700.0  36028600.0
2019-12-31  323.833313  45.860001  292.163818  325.760010  45.860001  293.649994  ...  325.410004  45.070000  289.929993  4958800.0   31673200.0  25201400.0
票数 0
EN

Stack Overflow用户

发布于 2020-05-26 03:52:09

我认为误差来自移动平均线和d'sma50‘=np.round(d’‘Close’..rolling(window=2).mean(),decimals=2)这条线。因为d代表3只股票,所以我认为你必须分离每只股票并分别计算移动平均线。

编辑:我只尝试了两只股票(英航和AMD),但这不是最好的解决方案,因为我总是重复每一行。我只是Python的初学者,但这可能会帮助你找到问题的解决方案PS :最后一行不太好用(这是打印P&L和Return)

代码语言:javascript
运行
复制
import pandas as pd
import pandas_datareader as web
import datetime as dt
stock1 = ['BA']
stock2=['AMD']
start = dt.datetime(2018, 1, 1)
end = dt.datetime(2020, 1, 1)
d1 = web.DataReader(stock1, 'yahoo', start, end)
d2 = web.DataReader(stock2, 'yahoo', start, end)
d1['sma50'] = np.round(d1['Close'].rolling(window=2).mean(), decimals=2)
d2['sma50'] = np.round(d2['Close'].rolling(window=2).mean(), decimals=2)
d1['sma200'] = np.round(d1['Close'].rolling(window=14).mean(), decimals=2)
d2['sma200'] = np.round(d2['Close'].rolling(window=14).mean(), decimals=2)
d1['200-50'] = d1['sma200'] - d1['sma50']
d2['200-50'] = d2['sma200'] - d2['sma50']
_buy = -2
d1['Crossover_Long'] = np.where(d1['200-50'] < _buy, 1, 0)
d2['Crossover_Long'] = np.where(d2['200-50'] < _buy, 1, 0)
d1['Crossover_Long_Change']=d1.Crossover_Long.diff()
d2['Crossover_Long_Change']=d2.Crossover_Long.diff()
d1['buy'] = np.where(d1['Crossover_Long_Change'] == 1, 'buy', 'n/a')
d2['buy'] = np.where(d2['Crossover_Long_Change'] == 1, 'buy', 'n/a')
d1['sell_BA'] = np.where(d1['Crossover_Long_Change'] == -1, 'sell', 'n/a')
d2['sell_AMD'] = np.where(d2['Crossover_Long_Change'] == -1, 'sell', 'n/a')
pd.set_option('display.max_rows', 5093)
d1.drop(['High', 'Low', 'Close', 'Volume', 'Open'], axis=1, inplace=True)
d2.drop(['High', 'Low', 'Close', 'Volume', 'Open'], axis=1, inplace=True)
d2.dropna(inplace=True)
d1.dropna(inplace=True)
d1.set_index("Adj Close",inplace=True)
d2.set_index("Adj Close",inplace=True)
buy_price_BA = np.array(d1.index[d1['Crossover_Long_Change']==1])
buy_price_AMD = np.array(d2.index[d2['Crossover_Long_Change']==1])
sell_price_BA = np.array(d1.index[d1['Crossover_Long_Change']==-1])
sell_price_AMD = np.array(d2.index[d2['Crossover_Long_Change']==-1])
d1['Crossover_Long_Change'].value_counts()
d2['Crossover_Long_Change'].value_counts()
profit_loss_BA = (sell_price_BA - buy_price_BA)*10
profit_loss_AMD = (sell_price_AMD - buy_price_AMD)*10
commision_BA = buy_price_BA*.01
commision_AMD = buy_price_AMD*.01
position_value_BA = (buy_price_BA + commision_BA)*10
position_value_AMD = (buy_price_AMD + commision_AMD)*10
percent_return_BA = np.round(((profit_loss_BA/position_value_BA)*100),decimals=2)
percent_return_AMD = np.round(((profit_loss_AMD/position_value_AMD)*100),decimals=2)
prices_BA = { 
    "Buy Price BA" : [buy_price_BA],
    "Sell Price BA" : [sell_price_BA],
    "P/L BA" : [profit_loss_BA],
    "Return BA": [percent_return_BA]}
df = pd.DataFrame(prices_BA)
print('The return was {}%, and profit or loss was ${} '.format(np.round(df['Return BA'].sum(), decimals=2), 
                                                           np.round(df['P/L BA'].sum(), decimals=2)))
prices_AMD = { 
    "Buy Price AMD" : [buy_price_AMD],
    "Sell Price AMD" : [sell_price_AMD],
    "P/L AMD" : [profit_loss_AMD],
    "Return AMD": [percent_return_AMD]}
df = pd.DataFrame(prices_AMD)
print('The return was {}%, and profit or loss was ${} '.format(np.round(df['Return AMD'].sum(), decimals=2), 
                                                               np.round(df['P/L AMD'].sum(), decimals=2)))
票数 0
EN

Stack Overflow用户

发布于 2020-09-18 22:29:21

似乎pandas数据阅读器中有一个bug。我通过初始化一个符号,然后在实例化的对象上设置symbols属性来解决这个问题。这样做之后,可以很好地调用下面的tmp上的read()。

代码语言:javascript
运行
复制
import pandas_datareader as pdr
all_symbols = ['ibb', 'xly', 'fb', 'exx1.de']

tmp = pdr.yahoo.daily.YahooDailyReader(symbols=all_symbols[0])
# this is a work-around, pdr is broken...
tmp.symbols = all_symbols
data = tmp.read()
票数 0
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/62008825

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档